Abstract
In this paper, we utilize source mel-frequency cepstral coefficients (SMFCCs), skewness, and kurtosis extracted in glottal flow signals to improve speaker recognition performance. Generally, because the high band magnitude response of glottal flow signals is somewhat flat, the SMFCCs are extracted using the response below the predefined cutoff frequency. The extracted SMFCC, skewness, and kurtosis are concatenated with conventional feature parameters. Then, dimensional reduction by the principal component analysis (PCA) and the linear discriminat analysis (LDA) is followed to compare performances with conventional systems under equivalent conditions. The proposed recognition system outperformed the conventional system for large scale speaker recognition experiments. Especially, the performance improvement was more noticeable for small Gaussan mixtures.
본 논문에서는 화자 인식의 성능을 개선하기 위해서 glottal flow로부터 source mel-frequency cepstral coefficient (SMFCC), 왜도, 첨도를 추출하여 활용하였다. 일반적으로 glottal flow의 고주파 대역은 응답의 크기가 평탄하므로 미리 정한 차단주파수 미만에 대해서만 SMFCC를 추출한다. 추출된 SMFCC, 왜도, 첨도는 종래의 특징 파라미터와 결합된 후 종래의 화자인식 시스템과 동등한 조건에서의 성능 비교를 위하여 principal component analysis (PCA) 및 linear discriminiat analysis (LDA)를 통한 차원축소가 행해진다. 대용량의 화자인식 실험결과를 통해서 제안된 인식 시스템이 종래의 화자인식 시스템 보다 더 좋은 성능을 나타냄을 확인할 수 있었으며, 특히 가우시안 혼합이 낮을 때 더 높은 성능향상을 나타내었다.