DOI QR코드

DOI QR Code

Effect of Tropospheric Delay Irregularity in Network RTK Environment

기준국 간 대류권 지연 변칙이 네트워크 RTK에 미치는 영향

  • Han, Younghoon (Marine Safety Research Division, Korea Research Institute of Ships and Ocean Engineering) ;
  • Ko, Jaeyoung (Marine Safety Research Division, Korea Research Institute of Ships and Ocean Engineering) ;
  • Shin, Mi-Young (Marine Safety Research Division, Korea Research Institute of Ships and Ocean Engineering) ;
  • Cho, Deuk-Jae (Marine Safety Research Division, Korea Research Institute of Ships and Ocean Engineering)
  • Received : 2015.09.21
  • Accepted : 2015.10.28
  • Published : 2015.11.30

Abstract

Network RTK generally uses a linear interpolation method by using the corrections from reference stations. This minimizes the spatial decorrelation error caused by the increase of distance between the reference station's baseline and user's baseline. However, tropospheric delay, a function of the meteorological data can cause a spatial decorrelation characteristic among reference stations within a network by local meteorological difference. A non-linear characteristic of tropospheric delay can deteriorate Network RTK performance. In this paper, the modeling of tropospheric delay irregularity is made from the data when the typhoon is occurred. By using this modeling, analyzing the effect of meteorological difference between reference stations on correction is performed. Finally, we analyze an effect of non-linear characteristics of tropospheric delay among reference stations to Network RTK user.

네트워크 RTK는 네트워크를 형성하는 다수의 기준국의 보정정보를 사용자 위치에 맞게 보간하여 사용함으로써 기준국과 사용자 간 기저선 거리 증가에 따른 공간이격 오차를 최소화 한다. 하지만 대류권 지연은 기상의 함수로 국지적인 기상변화를 원인으로 사용자와 네트워크 내 기준국 간 대류권 지연에 비선형 특성을 발생시킬 수 있으며, 이는 네트워크 RTK 성능을 저하시킬 수 있다. 따라서 본 논문에서는 태풍이 있던 날의 데이터를 기반으로 대류권 지연 변칙 사례를 모델링하고, 이를 이용하여 기준국 간 기상차이가 기준국에서 생성하는 보정정보에 미치는 영향을 분석한다. 또한, 기준국 간 대류권 지연의 비선형성이 네트워크 RTK 사용자에게 미치는 영향을 분석한다.

Keywords

References

  1. N. Zinas, "Development and assessment of a new rover-enhanced network based data processing strategy for Global Navigation Satellite Systems", PhD Thesis, UCL (University College London), 2010.
  2. Y. Han et al, "An analysis for irregularity of tropospheric delay due to local weather change effects on Network RTK", The Transactions of the Korean Institute of Electrical Engineers Vol. 62, No. 2, pp.1690-1696, 2014
  3. S. Skone, "Propagation Environmental Effects on GPS", ION GNSS, Navtech Tutorial Notes, 2005.
  4. D. Lawrence et al, "Decorrelation of Troposphere Across Short Baselines", IEEE/ION PLANS, pp. 94-102, 2006.
  5. Y.W. Ahn, D. Kim and P. Dare, "Local tropospheric anomaly effects on GPS RTK performance", ION GNSS, Fort Worth, Texas, U.S.A, pp. 1925-1935, 2006.
  6. L. Dai, S. Han, J. Wang and C. Rizos, "A Study on GPS/GLONASS Multiple Reference Station Techniques for Precise Real-Time Carrier Phase Based Positioning", ION GPS, September 11-14, 2001.
  7. Radio Technical Commission for Maritime Services, "RTCM Standard 10403.1 for Differential GNSS (Global Navigation Satellite Systems) Services - Version 3", RTCM Paper 150-2007-SC104-STD, 2007.
  8. J. Saastamoinen, "Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites", in The Use of Artificial Satellites for Geodesy, Geophys. Monogr. Ser., volume 15, pp. 247-251, AGU, Washington, D.C. 1972.
  9. A.E. Niell, "Global mapping functions for the atmosphere delay at radio wavelengths", Journal of Geophysical Research, Volume 10, No. B2, pp.3227-3246.
  10. Y. Han et al, "A Method to Monitor the Irregularity in Tropospheric Delay between Reference Stations of a Network RTK", European Navigation Conference 2014.