DOI QR코드

DOI QR Code

가축분뇨의 마이크로버블과 촉매와의 반응 시간 증가에 따라 질소 제거에 미치는 영향

The Effect of the Reaction Time Increases of Microbubbles with Catalyst on the Nitrogen Reduction of Livestock Wastewater

  • 장재경 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 성제훈 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 강연구 (국립농업과학원 농업공학부 에너지환경공학과) ;
  • 김영화 (국립농업과학원 농업공학부 에너지환경공학과)
  • Jang, Jae Kyung (Energy and Environmental Division, National Academy of Agricultural Science) ;
  • Sung, Je Hoon (Energy and Environmental Division, National Academy of Agricultural Science) ;
  • Kang, Youn Koo (Energy and Environmental Division, National Academy of Agricultural Science) ;
  • Kim, Young Hwa (Energy and Environmental Division, National Academy of Agricultural Science)
  • 투고 : 2015.09.18
  • 심사 : 2015.10.29
  • 발행 : 2015.10.31

초록

가축분뇨에 포함된 질소이온의 저감 효과가 마이크로버블과 촉매와 접촉하는 시간을 증가시켜 향상되는지를 알아보았다. 마이크로버블과 촉매를 이용하는 반응기 2개를 연속 배치시키고, 첫번째 반응기(1단)를 거쳐 다음 반응기(2단)로 이송되도록 하였으며 각 반응기에서는 2시간씩 반응하도록 하였다. 가축분뇨의 마이크로버블과 촉매와의 반응시간 2시간과 4시간 경과했을 때, 산화제로 공기를 사용하였을 때는 암모니아성 질소 제거율은 15.6%에서 39.3%로, 산소를 넣었을 때는 18.3%에서 52.8%로 증가하여 반응시간이 길수록, 그리고 산소를 사용할 때 제거율이 더 높은 것으로 나타났다. 아질산성질소와 질산성질소의 경우도 산소를 이용할 때 반응시간에 따라 아질산성질소는 80.2%에서 90.4%로, 질산성질소는 60.0%에서 75%로 반응시간이 길수록, 그리고 산소를 사용할 때 더 높은 것으로 나타났다. 유기오염물질의 경우 TCOD의 제거능이 SCOD의 제거능 보다 높게 나타났는데 이것은 생물학적으로 분해가 불가능한 물질의 분해가 더 많이 된 것을 의미하며, 이 시스템 이후 생물학적 처리를 수행하는 경우 유출수의 유기오염물질 농도를 줄일 수 있을 것으로 판단된다.

It was investigated whether the removal of nitrogen ions included livestock wastewater were increased by increasing the reaction time of livestock wastewater and microbubbles with catalyst. For this study, the nitrogen reduction system using microbubbles with catalyst was used. The two reactors were consecutively arranged, and the second reactor (Step 2) was located to next the first reactor (Step 1). Each reactor was reacted for 2 hours and air or oxygen as oxidant was fed into the reactor during operation before microbubble device. When oxygen was used, ammonia nitrogen was removed each 18.3% and 52.8% during 2 (only step 1) and 4 (step 1 and step 2) hours reactions. This value was higher than that of when air was fed. When oxygen was used, the longer the reaction time, the ammonia nitrogen removal was higher. The longer the reaction time, the higher the nitrite and nitrate was also removed such as ammonia nitrogen. Also this system was examined whether organic matter removal is effective. The total chemical oxygen demand (TCOD) removal was higher than the soluble chemical oxygen demand (SCOD). Some materials among causing substances COD were difficult to decompose biologically. Therefore, it means that it will be easy to operate the biological processes following step and reduce the concentration of organic contaminants in effluent.

키워드

참고문헌

  1. Jong, J. K., Kim, S. H., Ryou, Y. S., Lee, S. H., Kang, Y. G., Kim, Y. H. and Choi, J. E., "Studies on a feasibility of swine farm wastewater treatment using microbiol fuel cell," Korean J. Microbiol. Biotechnol., 38(4), 461-466(2010).
  2. Schmidt, L. E., Batstone, D. J. and Angelidaki, I., "Improved nitrogen removal in upflow anaerobic sludge blanket (UASB) reactors by incorporation of anammox bacteria in to the granular sludge," Water Sci. Technol., 49, 69-76(2004).
  3. Yetilmezsoy, K. and Sapci-Zengin, Z., "Recovery of ammonium nitrogen from the effluent of UASB treating poultry nanure wastewater by MAP precipitation as a slow release fertilizer," J. Hazard. Mater., 166(1), 260-269(2009). https://doi.org/10.1016/j.jhazmat.2008.11.025
  4. Kim, D. S., Jung, N. S. and Park, Y. S., "Characteristics of nitrogen and phosphorus removal in SBR and SBBR with different ammonium loading rates," Korean J. Chem. Eng., 25(4), 793-800(2008). https://doi.org/10.1007/s11814-008-0130-2
  5. Barber, W. and Stuckey, D. C., "Nitrogen removal in a modified anaerobic baffled reactor (ABR): 1 Denitrificaiton," Water Res., 34(9), 2413-2422(2000). https://doi.org/10.1016/S0043-1354(99)00425-X
  6. Barber, W. and Stuckey, D. C., "Nitrogen removal in a modified anaerobic baffled reactor (ABR): 2 Nitrificaiton," Water Res., 34(9), 2423-2432(2000). https://doi.org/10.1016/S0043-1354(99)00426-1
  7. Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P. and Rabaey, K., "Microbial fuel cells: methodology and technology," Environ. Sci. Technol., 40(17), 5181-5192(2006). https://doi.org/10.1021/es0605016
  8. Wagner, R. C., Regan, J. M., Oh, S. E., Zuo, Y. and Logan, B. E., "Hydrogen and methane production from swine wastewater using microbial electrolysis cells," Water Res., 43, 1480-1488(2009). https://doi.org/10.1016/j.watres.2008.12.037
  9. Rabaey, K. and Verstraete, W., "Microbial fuel cells; novel biotechnology for energy generation," Trends Biotechnol., 23 (6), 291-298(2005). https://doi.org/10.1016/j.tibtech.2005.04.008
  10. Gil, G. C., Chang, I. S., Kim, B. H., Kim, M., Jang, J. K., Park, H. S. and Kim, H. J., "Operational parameters affecting the performance of a mediator-less microbial fuel cell," Biosens. Bioelectron., 18, 327-324(2003). https://doi.org/10.1016/S0956-5663(02)00110-0
  11. Jang, J. K., Pham, T. H., Chang, I. S., Kang, K. H., Moon, H., Cho, K. S. and Kim, B. H., "Construction and operation of a novel mediator- and membrane-less microbial fuel cell," Process Biochem., 39(8), 1007-1012(2004). https://doi.org/10.1016/S0032-9592(03)00203-6
  12. Min, B., Kim, J. R., Oh, S. E., Regan, J. M. and Logan, B. E., "Electricity generation from swine wastewater using microbial fuel cell," Water Res., 39, 4961-4968(2005). https://doi.org/10.1016/j.watres.2005.09.039
  13. Jang, J. k., Choi, J. E., Ryou, Y. S., Lee, S. H. and Lee, E. Y., "Effect of ammonium and nitrate on current generation using dual-cathode microbial fuel cells," J. Microbial. Biotechnol., 22(2), 270-273(2012). https://doi.org/10.4014/jmb.1110.10040
  14. Lee, Y. and Nirmallkhandan, N., "Electricity production in membrane-less microbial fuel cell with livestock organic solid waste," Bioresour. Technol., 102(10), 5831-5835(2011). https://doi.org/10.1016/j.biortech.2011.02.090
  15. Jang, J. K., Ryou, Y. S., Park, J. S., Kang, Y. K., Kim, Y. H. and Kim, J. G., "Removal of ammonium and nitrate in swine wastewater to prevent the current drop of microbial fuel cells," In Proceedings of the international symposium on 4th Microbial fuel cell, Caims, Australia, p. 246(2013).
  16. Handforth, S. L. and Tilley, J. N., "Catalysts for oxidation of ammonia to oxides of nitrogen," Ind. Eng. Chem., 26(12), 1287-1292(1934). https://doi.org/10.1021/ie50300a016
  17. Liao, P. H., Chen, A. and Lo, K. V., "Removal of nitrogen from swine manure wastewater by ammonia stripping," Bioresour. Technol., 54(1), 17-20(1995). https://doi.org/10.1016/0960-8524(95)00105-0
  18. Lee, D., "Removal of aqueous ammonia to molecular nitrogen by catalytic wet oxidation," J. Korean Soc. Environ. Eng., 25(7), 889-897(2003).
  19. Chu, L. B., Xing, X. H., Yu A. F., Sun X. L. and Jurcik, B., "Enhanced treatment of practical textile wastewater by microbubble ozonation," Proc. Safety and Environ. Protect., 86, 389-396(2008).
  20. Khuntia, S., Majumder, S. K. and Ghosh, P., "Microbubblesaided water and wastewater purification: a review," Rev. Chem. Eng., 28, 191-221(2012).
  21. Cha, H., "Present state and future prospect for microbubble technology," Bullet. Food Technol., 22(3), 544-552(2009).
  22. Lee, W., Lee, C., Yoo, J. Y., Kim, K. and Jang, K., "Sterilization efficacy of washing method using based on microbubbles and electrolyzed water on various vegetables," J. Korean Soc. Food Sci. Nutr., 40(6), 912-917(2011). https://doi.org/10.3746/jkfn.2011.40.6.912
  23. Jung, K. D., Joo, O. S., Oh, J. W., Lee, E. G. and Choi, G. I., "Desulfurization for simultaneous removal of hydrogen sulfide and sulfur dioxide," Patent 10-2005-0116694.
  24. Lee, J., Jin, B., Cho, S., Jung, K. and Han, S., "Advanced wet oxidation of Fe/MgO : catalytic ozonation of humic acid and phenol," Theories and Appl. Chem. Eng., 8(2), 4537-4576(2002).

피인용 문헌

  1. Simultaneous Removal of Organic Pollutants, Nitrogen, and Phosphorus from Livestock Wastewater by Microbubble-Oxygen in a Single Reactor vol.39, pp.11, 2017, https://doi.org/10.4491/KSEE.2017.39.11.599