Abstract
This study aims to investigate the characteristics and types of car accidents and establish a prediction model by analyzing 456 car accidents having occurred in the 11 tunnels in Busan, through statistical analysis techniques. The results of this study can be summarized as below. As a result of analyzing the characteristics of car accidents, it was found that 64.9% of all the car accidents took place in the tunnels between 08:00 and 18:00, which was higher than 45.8 to 46.1% of the car accidents in common roads. As a result of analyzing the types of car accidents, the car-to-car accident type was the majority, and the sole-car accident type in the tunnels was relatively high, compared to that in common roads. Besides, people at the age between 21 and 40 were most involved in car accidents, and in the vehicle type of the first party to car accidents, trucks showed a high proportion, and in the cloud cover, rainy days or cloudy days showed a high proportion unlike clear days. As a result of analyzing the principal components of car accident influence factors, it was found that the first principal components were road, tunnel structure and traffic flow-related factors, the second principal components lighting facility and road structure-related factors, the third principal factors stand-by and lighting facility-related factors, the fourth principal components human and time series-related factors, the fifth principal components human-related factors, the sixth principal components vehicle and traffic flow-related factors, and the seventh principal components meteorological factors. As a result of classifying car accident spots, there were 5 optimized groups classified, and as a result of analyzing each group based on Quantification Theory Type I, it was found that the first group showed low explanation power for the prediction model, while the fourth group showed a middle explanation power and the second, third and fifth groups showed high explanation power for the prediction model. Out of all the items(principal components) over 0.2(a weak correlation) in the partial correlation coefficient absolute value of the prediction model, this study analyzed variables including road environment variables. As a result, main examination items were summarized as proper traffic flow processing, cross-section composition(the width of a road), tunnel structure(the length of a tunnel), the lineal of a road, ventilation facilities and lighting facilities.
본 연구는 통계적 분석기법을 통하여 부산시내에서 운영 중인 11개 터널에서 발생한 교통사고 456건을 대상으로 교통사고의 발생특성, 유형화 및 예측모델을 구축하였는바 다음과 같은 결론을 얻게 되었다. 교통사고 발생특성으로는 시간대별 터널 내 교통사고 08~18시 사이가 전체의 64.9%를 차지하고 있어 기존 도로의 45.8~46.1%에 비해 높게 나타났고, 사고유형별로는 차대차 사고가 대부분을 차지하고 있으며, 차량단독사고는 기존도로에 비해 다소 높게 나타났으며, 연령층별로는 21~40세의 구성비가 높았고, 제1당사자 차종별로는 화물차의 비중이 높았고, 운량별로는 맑은 날을 제외하고 비가 오는 날이 흐린 날 보다 더욱 높은 수치를 보였다. 교통사고 영향요인에 대하여 주성분분석을 실시한 결과, 제1주성분은 도로, 터널구조 및 교통류 관련요인이, 제2주성분은 조명시설 및 도로구조 관련요인이, 제3주성분은 대기상태 및 조명시설 관련요인이, 제4주성분은 인적 및 시계열 관련요인이, 제5주성분은 인적요인이, 제6주성분은 차량적 요인과 교통류 관련 요인이, 제7주성분은 기상요인으로 대별되었다. 교통사고 발생지점에 대하여 유형화를 실시한 결과, 최적 집단수는 5개로 구분지어 졌으며, 집단별로 수량화이론 1류를 적용하여 분석한 결과, 제1집단은 예측모델의 설명력이 낮은 반면 제4집단은 예측모델의 설명력이 중간정도, 제2, 제3, 제5집단은 높은 설명력을 가진 예측모델이 구축되었다. 예측모델의 편상관계수 절대 값이 0.2(약한 상관) 이상인 항목(주성분) 중에서 도로환경적 요인이 포함된 변수를 체크하여 분석한 결과, 주요 검토항목은 적절한 교통류 처리, 횡단구성(차로폭), 터널구조(터널길이), 도로선형, 환기시설, 조명시설로 요약되었다.