DOI QR코드

DOI QR Code

곁가지에 다양한 길이의 알코올 그룹을 지닌 고분자들의 저임계 용액온도 민감성 제어

Precise Control of Thermoresponsive Properties of Polymers with Hydroxy Groups in the Side Chains

  • 투고 : 2014.07.13
  • 심사 : 2014.08.03
  • 발행 : 2015.01.25

초록

하이드록시 그룹을 지닌 온도민감형 고분자들이 원자전이라디칼중합법(ATRP)과 클릭반응(click reaction)에 의해 합성되어졌다. 고분자들의 분자량과 분자량 분포도는 gel permeation chromatography(GPC)에 의하여 얻어졌고, 고분자들의 분자량은 잘 제어되었으며 분자량 분포도도 낮게 유지되었다. 클릭반응의 효율은 $^1H$ NMR spectroscopy에 의해 얻어졌으며, 높은 효율을 나타내었다. 고분자 사슬 곁가지의 아민 그룹의 종류와, 치환된 알코올 그룹의 종류에 따라 저임계 용액 온도(LCST)의 제어가 가능했다.

Thermoresponsive polymers were successfully synthesized by a combination of atom transfer radical polymerization (ATRP) and Cu(I)-catalyzed 1,3-dipolar cycloaddition of azide and alkynes (click chemistry). Poly(2-hydroxyethyl methacrylate) (PHEMA) was synthesized by ATRP, followed by introduction of alkyne groups using pentynoic acid, leading to HEMA-alkyne. Homopolymers having secondary amine groups, tertiary amines with hydroxyethyl and hydroxypropyl groups were synthesized by adding 2-azido-N-ethyl-ethanamine, 2-[(2-azidoethyl)amino]ethanol, and 2-[(2-azidoethyl)amino]propanol, respectively, to the PHEMA-alkyne backbone using click chemistry. Molecular weight (MW), molecular weight distribution (MWD), and click reaction efficiency were determined by gel permeation chromatography (GPC) and $^1H$ NMR spectroscopy. The transmission spectra of the 1.0 wt% aqueous solutions of the resulting polymers at 650 nm were measured as a function of temperature. Results showed that the lower critical solution temperature (LCST) could be easily controlled by the length of the hydroxyalkyl groups.

키워드

과제정보

연구 과제번호 : 지역산업 밀착형 정밀화학 창의인재 양성 사업팀

참고문헌

  1. A. K. Bajpai, S. K. Shukla, S. Bhanu, and S. Kankane, Prog. Polym. Sci., 33, 1088 (2008). https://doi.org/10.1016/j.progpolymsci.2008.07.005
  2. H.-i. Lee, J. Pietrasik, S. S. Sheiko, and K. Matyjaszewski, Prog. Polym. Sci., 35, 24 (2010). https://doi.org/10.1016/j.progpolymsci.2009.11.002
  3. N. Rapoport, Prog. Polym. Sci., 32, 962 (2007). https://doi.org/10.1016/j.progpolymsci.2007.05.009
  4. D. Roy, J. N. Cambre, and B. S. Sumerlin, Prog. Polym. Sci., 35, 278 (2010). https://doi.org/10.1016/j.progpolymsci.2009.10.008
  5. M. Yamato, Y. Akiyama, J. Kobayashi, J. Yang, A. Kikuchi, and T. Okano, Prog. Polym. Sci., 32, 1123 (2007). https://doi.org/10.1016/j.progpolymsci.2007.06.002
  6. C. de las H. Alarcon, S. Pennadam, and C. Alexander, Chem. Soc. Rev., 34, 276 (2005). https://doi.org/10.1039/b406727d
  7. P. M. Mendes, Chem. Soc. Rev., 37, 2512 (2008). https://doi.org/10.1039/b714635n
  8. S. S. Balamurugan, G. B. Bantchev, Y. Yang, and R. L. McCarley, Angew. Chem., Int. Ed., 44, 4872 (2005). https://doi.org/10.1002/anie.200500867
  9. R. Pelton, Adv. Colloid Interface Sci., 85, 1 (2000). https://doi.org/10.1016/S0001-8686(99)00023-8
  10. D. Schmaljohann, Adv. Drug Deliver. Rev., 58, 1655 (2006). https://doi.org/10.1016/j.addr.2006.09.020
  11. F. A. Plamper, A. Schmalz, M. Ballauff, and A. H. E. Mueller, J. Am. Chem. Soc., 129, 14538 (2007). https://doi.org/10.1021/ja074720i
  12. J.-F. Lutz, K. Weichenhan, O. Akdemir, and A. Hoth, Macromolecules, 40, 2503 (2007). https://doi.org/10.1021/ma062925q
  13. I. Dimitrov, B. Trzebicka, A. H. E. Mueller, A. Dworak, and C. B. Tsvetanov, Prog. Polym. Sci., 32, 1275 (2007). https://doi.org/10.1016/j.progpolymsci.2007.07.001
  14. K. Matyjaszewski and J. Xia, Chem. Rev., 101, 2921 (2001). https://doi.org/10.1021/cr940534g
  15. J.-S. Wang and K. Matyjaszewski, J. Am. Chem. Soc., 117, 5614 (1995). https://doi.org/10.1021/ja00125a035
  16. C. J. Hawker, A. W. Bosman, and E. Harth, Chem. Rev., 101, 3661 (2001). https://doi.org/10.1021/cr990119u
  17. G. Moad, E. Rizzardo, and S.H. Thang, Aust. J. Chem., 58, 379 (2005). https://doi.org/10.1071/CH05072
  18. B. S. Sumerlin and A. P. Vogt, Macromolecules, 43, 1 (2010). https://doi.org/10.1021/ma901447e
  19. J.-F. Lutz, O. Akdemir, and A. Hoth, J. Am. Chem. Soc., 128, 13046 (2006). https://doi.org/10.1021/ja065324n
  20. J.-F. Lutz and A. Hoth, Macromolecules, 39, 893 (2006). https://doi.org/10.1021/ma0517042
  21. S.-H. Jung, H.-Y. Song, Y. Lee, H. M. Jeong, and H.-I. Lee, Macromolecules, 44, 1628 (2011). https://doi.org/10.1021/ma102751p