DOI QR코드

DOI QR Code

Blood-compatible Bio-inspired Surface of Poly(L-lactide-co-ε-caprolactone) Films Prepared Using Poor Co-solvent Casting

비용매 휘발법을 이용한 생체모사 혈액친화성 폴리락티드-카프로락톤 공중합체 필름의 제조

  • Lim, Jin Ik (Laboratory of Biointerfaces/Tissue Engineering, Department of Chemical Engineering, Institute of Tissue Regeneration Engineering, College of Engineering, Dankook University) ;
  • Kim, Soo Hyun (Division of Life and Health Sciences, Biomaterials Research Center, Korea Institute of Science and Technology)
  • 임진익 (단국대학교 화학공학과) ;
  • 김수현 (한국과학기술연구원 생체재료연구단)
  • Received : 2014.05.12
  • Accepted : 2014.07.03
  • Published : 2015.01.25

Abstract

Simple poor-cosolvent casting was used to surface treat biodegradable elastic poly(L-lactide-co-${\varepsilon}$-caprolactone) (PLCL; 50:50) copolymer films that presented lotus-leaf-like structures. We evaluated whether the lotus-leaflike-structured PLCL (L-PLCL) films could be used as a biomaterial for artificial vascular grafts. The surface morphology, hydrophobicity, and antithrombotic efficiency of the films were examined while immersed in platelet-rich plasma (PRP) using scanning electron microscopy (SEM) and a contact angle meter. The recovery and crystallinity of the films were measured using a tensile-strength testing machine and an X-ray diffractometer, respectively. The solvent containing acetic acid, as a poor co-solvent, and methylene chloride mixed in a 1:2 ratio produced an optimal PLCL film with a water contact angle of approximately $124^{\circ}$. Furthermore, the surface of the L-PLCL films immersed in PRP showed a lower rate of platelet adhesion (<10%) than that of the surface of an untreated PLCL film immersed in PRP.

혈항혈전성 표면의 제조를 위해 간단한 비용매 휘발 방법을 통하여 고탄성체이면서 생분해성 폴리 락티드-카프로락톤 공중합체 필름의 표면상에 연잎 구조물과 유사한 마이크로 돌기를 만들어 주었다. 표면 구조와 소수성도, 항혈전 효과 등을 시험했으며, 결정화도와 탄성회복률 등의 물리적 특성도 분석하였다. 그 결과 비용매와 메틸렌클로라이드의 혼합 부피비 1:2에서 연잎표면과 유사한 최적의 효과를 얻었으며, 이때 수접촉각은 $124^{\circ}$였다. 혈소판 부착시험에서는 처리하지 않는 군에 비해 약 10%만 부착되는 효과를 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. C. M. Agrawal, K. F. Haas, D. A. Leopold, and H. G. Clark, Biomaterials, 13, 176 (1992). https://doi.org/10.1016/0142-9612(92)90068-Y
  2. G. Chen, T. Ushida, and T. Tateishi, Mater. Sci. Eng. C, 17, 36 (2001).
  3. H. Shen, X. Hu, F. Yang, J. Bei, and S. Wang, Biomaterials, 28, 4219 (2007). https://doi.org/10.1016/j.biomaterials.2007.06.004
  4. H. I. Kim, K. Ishihara, S. Lee, J. H. Seo, H. Y. Kim, D. Suh, M. U. Kim, T. Konno, M. Takai, and J. S. Seo, Biomaterials, 32, 2241 (2011). https://doi.org/10.1016/j.biomaterials.2010.11.067
  5. H. Shen, X. X. Hu, F. Yang, J. Z. Bei, and S. G. Wang, Biomaterials, 4219, 28 (2007).
  6. H. Shen, X. X. Hu, F. Yang, J. Z. Bei, and S.G. Wang, Acta Biomater., 6, 455 (2010). https://doi.org/10.1016/j.actbio.2009.07.016
  7. Y. P. Yiann, in Structural and Dynamic Properties of Lipids and Membranes, P. J. Quinn and R. Cherry, Editors, Portland Press, London, p 187 (1992).
  8. C. D. Forbes and J. M. Courtney, Scott. Med. J., 40, 99 (1995).
  9. J. M. Courtney and C. D. Forbes, Br. Med. Bull., 50, 966 (1994).
  10. J. I. Lim, S. I. Kim, Y. Jung, and S. H. Kim, Polymer(Korea), 37, 411 (2013).
  11. J. M. Courtney, N. M. K. Lamba, S. Sundaram, and C. D. Forbes, Biomaterials, 15, 737 (1994). https://doi.org/10.1016/0142-9612(94)90026-4
  12. T. A. Horbett, Cardiovasc. Pathol., 2, 137 (1993).
  13. J. L. Brash and T. A. Horbett, Proteins at Interfaces II, J. L. Brash and T. A. Horbett, Editors, ACS Symposium Series, American Chemical Society, Washington, DC, Vol 602, p 1 (1995).
  14. W. B. Tsai, J. M. Grunkemeier, and T. A. Horbett, J. Biomed. Mater. Res., 44, 130 (1999). https://doi.org/10.1002/(SICI)1097-4636(199902)44:2<130::AID-JBM2>3.0.CO;2-9
  15. Y. H. Shen, M. S. Shoichet, and M. Radisic, Acta Biomater., 4, 477 (2008). https://doi.org/10.1016/j.actbio.2007.12.011
  16. Y. H. Kim, K. D. Park, and D. K. Han, in Polymeric Materials Encyclopedia, J. C. Salamone, Editor, CRC Press, Boca Raton, p 825 (1996).
  17. P. Olsson, J. Sanchez, T. E. Mollnes, and J. Riesenfeld, J. Biomater. Sci. Polym. Ed., 11, 1261 (2000).
  18. H. Wu, C. Liao, Q. Jiao, Z. Wang, W. Cheng, and Y. Wan, React. Funct. Polym., 72, 427 (2012). https://doi.org/10.1016/j.reactfunctpolym.2012.04.007
  19. B. S. Zolnik and D. J. Burgess, J. Control. Release, 127, 137 (2008). https://doi.org/10.1016/j.jconrel.2008.01.004
  20. L. Gao and T. J. McCarthy, Langmuir, 25, 1410 (2009).
  21. C. R. Crick and I. P. Parkin, Chem. Eur. J., 16, 3568 (2010). https://doi.org/10.1002/chem.200903335
  22. W. L. Song, D. D. Veiga, C. A. Custodio, and J. F. Mano, Adv. Mater., 21, 1830 (2009). https://doi.org/10.1002/adma.200803680
  23. Y. Y. Yan, N. Gao, and W. Barthlott, Adv. Colloid Interface Sci., 169, 80 (2011). https://doi.org/10.1016/j.cis.2011.08.005
  24. M. Ma and R. M. Hill, Curr. Opin. Colloid Interface Sci., 11, 193 (2006). https://doi.org/10.1016/j.cocis.2006.06.002
  25. S. I. Jeong, B. S. Kim, S. W. Kang, J. H. Kwon, Y. M. Lee, S. H. Kim, and Y. H. Kim, Biomaterials, 25, 5939 (2004). https://doi.org/10.1016/j.biomaterials.2004.01.057
  26. S. I. Kim, J. I. Lim, B. R. Lee, C. H. Mun, Y. Jung, and S. H. Kim, Colloids Surf. B: Biointerfaces, 114, 28 (2014). https://doi.org/10.1016/j.colsurfb.2013.09.038
  27. M. Zhou, J. Yang, X. Ye, A. Zheng, G. Li, P. Yang, Y. Zhu, and L. Cai, J. Nano Res., 2, 129 (2008). https://doi.org/10.4028/www.scientific.net/JNanoR.2.129
  28. H. C. Schwarzera and W. Peukert, Chem. Eng. Sci., 60, 11 (2005). https://doi.org/10.1016/j.ces.2004.06.050
  29. H. J. Ensikat, P. Ditsche-Kuru, C. Neinhuis, and W. Barthlott, J. Nanotechnol., 2, 152 (2011).