DOI QR코드

DOI QR Code

Effects of Zeolites on Thermal Stability of Poly(vinyl chloride)

폴리염화비닐(PVC)의 열안정성에 제올라이트가 미치는 영향

  • Xu, Jiayou (School of Chemistry and Chemical Engineering, Guangzhou University) ;
  • Liang, Qinghua (School of Chemistry and Chemical Engineering, Guangzhou University) ;
  • Xian, Xiumei (School of Chemistry and Chemical Engineering, Guangzhou University) ;
  • Li, Kaidan (School of Chemistry and Chemical Engineering, Guangzhou University) ;
  • Liu, Jie (School of Chemistry and Chemical Engineering, Guangzhou University)
  • Received : 2014.01.17
  • Accepted : 2014.08.06
  • Published : 2015.01.25

Abstract

The effects of zeolite on the thermal stability of poly(vinyl chloride) (PVC) were investigated by the static thermal stability test, pyrolysis experiment and ultraviolet spectrum. The results showed that the porous zeolite could absorb hydrogen chloride (HCl), which suppressed the catalysis of HCl on thermal degradation of PVC, thus improved the thermal stability of PVC. The oxidizing acid which was loaded on zeolite had oxidated on the double bond that formed during the dehydrochlorination of PVC. This process could prohibit the growth of the conjugated polyene and improved the color of PVC. Hence, zeolite might be possible to come up with a high performance thermal stabilizer.

Keywords

References

  1. N. A. Mohamed, A. A. Yassin, and K. D Khalil, Polym. Degrad. Stab., 70, 5 (2000). https://doi.org/10.1016/S0141-3910(00)00054-9
  2. J. L. Yan, D. Q. Li, and G. D. Evans, Polym. Degrad. Stab., 88, 286 (2005). https://doi.org/10.1016/j.polymdegradstab.2004.11.007
  3. N. Sombatsompop, K. Taptim, K. Chaochanchaikul, C. Thongpin, and V. Rosarpitak, J. Macromol. Sci. Part A: Pure Appl. Chem., 45, 534 (2008). https://doi.org/10.1080/10601320802100572
  4. C. Thongpin, J. Juntum, and R. Sa-Nguan-Moo, J. Thermoplast. Compos. Mater., 23, 435 (2010). https://doi.org/10.1177/0892705709347082
  5. S. Gupta, D. D. Agarwal, and S. Banerjee, J. Vinyl Add. Technol., 15, 164 (2009). https://doi.org/10.1002/vnl.20196
  6. R. J. Wen, Z. H. Yang, and H. Y. Chen, J. Rare Earths, 30, 895 (2012). https://doi.org/10.1016/S1002-0721(12)60151-3
  7. J. V. Smith, Chem. Rev., 88, 149 (1988). https://doi.org/10.1021/cr00083a008
  8. S. Gupta, D. D. Agarwal, and S. Banerjee, J. Vinyl Add. Technol., 15, 164 (2009). https://doi.org/10.1002/vnl.20196
  9. R. F. Grossman, J. Vinyl Add. Technol., 6, 4 (2000). https://doi.org/10.1002/vnl.10216
  10. Q. Yingjun, C. Senfang, Z. Qiliang, Z. Kezhen, T. Wei, and G. Erjin, Polyvinyl Chloride, 11, 36 (2011).
  11. S. Atakul, D. Balkose, and S. Ulku, J. Vinyl Add. Technol., 11, 47 (2005). https://doi.org/10.1002/vnl.20035
  12. A. C. Lepilleur, M. A. Mazany, L. D. Milenius, and A. L. Backman, U.S. Patent 6,306,945 (2001).
  13. H. Pi, Doctorate, Sichuan University, Chengdu, China (2013).
  14. L. E. Pimentel Real, A. M. Ferraria, and A. M. Botelho do Rego, Polym. Test., 9, 743 (2008).
  15. X. Zhao, Inner Mongolia Petrochemical Industry, 11, 171 (2007).
  16. M. Fernandez, J. Tortajada, and L. M. Zeitschri, Physica D, 9, 243 (1988).

Cited by

  1. Hot Runner Flow Channel Design for Injection Molds Using PVC Material vol.28, pp.1, 2019, https://doi.org/10.7735/ksmte.2019.28.1.56