DOI QR코드

DOI QR Code

A Study on the Photo Reversible One-dimensional Photonic Crystals Composed of TeOx(x=1.42)/SiO2

TeOx(x=1.42)/SiO2로 구성된 광가변적인 1차원 광자결정 연구

  • Kong, Heon (Department of Advanced Chemicals and Engineering, Chonnam National University) ;
  • Yeo, Jong-Bin (School of Applied Chemical Engineering, Chonnam National University) ;
  • Lee, Hyun-Yong (School of Applied Chemical Engineering, Chonnam National University)
  • 공헌 (전남대학교 신화학소재공학과) ;
  • 여종빈 (전남대학교 응용화학공학부) ;
  • 이현용 (전남대학교 응용화학공학부)
  • Received : 2014.11.10
  • Accepted : 2015.01.06
  • Published : 2015.02.01

Abstract

One-dimensional photonic crystals (1D PCs) were fabricated by RF sputtering technique on p-Si (100), and fused quartz substrates. The 1D PCs structures consisted of $TeO_x$ (x=1.42), and $SiO_2$ with the difference refractive index. In order to estimate the effect on a defect level within 1D PCs structures, samples were prepared with both normal, and defect mode. The structural and optical properties were confirmed by Scanning electron microscope (SEM), and Ultraviolet visible near-infrared spectrophotometer (UV-VIS-NIR) respectively. In the case of a 1D PC normal mode without defect layer, it had a photonic band gap (PBG) in the near infrared (NIR) region. In the case of a 1D PC defect mode with defect layer, it had a sharp transmission band owing to a defect level, and moved towards the longer wavelength after exposing He-Cd laser with a wavelength of 325 nm.

Keywords

References

  1. S. John, Phys. Rev. Lett., 58, 2486 (1987). https://doi.org/10.1103/PhysRevLett.58.2486
  2. E. Yablomovitch, Phys. Rev. Lett., 58, 2059 (1987). https://doi.org/10.1103/PhysRevLett.58.2059
  3. E. Yablonovitch, J. Opt. Soc. Am. B, 10, 283 (1993).
  4. A. K. Goyal, and S. Pal, Optik., 126, 240 (2015) https://doi.org/10.1016/j.ijleo.2014.08.174
  5. H. Xu, P. Wu, C. Zhu, A. Elbaz, and Z. Z. Gu, J. Mater. Chem. C, 1, 6087 (2013). https://doi.org/10.1039/c3tc30722k
  6. Y. N. Zhang, Y. Zhao, D. Wu, and Q. Wang, Sens. Actuators, B, 173, 505 (2012). https://doi.org/10.1016/j.snb.2012.07.051
  7. N. Hidalgo, M. E. Calvo, S. Colodrero, and H. Miguez, IEEE Sensor J., 10, 1206 (2010). https://doi.org/10.1109/JSEN.2010.2043525
  8. E. Yablonovitch, J. Phys.: Condens. Matter., 5, 2443 (1993). https://doi.org/10.1088/0953-8984/5/16/004
  9. E. Yablonovitch, J. Mod. Opt., 41, 173 (1994). https://doi.org/10.1080/09500349414550261
  10. J. D. Joannopoulos, P. Villeneuve, and S. Fan, Nature, 386, 143 (1997). https://doi.org/10.1038/386143a0
  11. W. D. Zhou, J. Sabarinathan, P. Bhattacharya, B. Kochman, E. W. Berg, P. C. Yu, and S. W. Pang, IEEE J. Quantum Electron., 37, 1153 (2001). https://doi.org/10.1109/3.945320
  12. M. W. Feise, I. V. Shadrivov, Y. S. Kivshar. Phys. Rev. E, 71, 037602 (2005). https://doi.org/10.1103/PhysRevE.71.037602
  13. H. Y. Lee, H. Makino, T. Yao, and A. Tanaka, Appl. Phys. Lett., 81, 4502 (2002). https://doi.org/10.1063/1.1524291
  14. M. F. Al-Kuhaili, S. M. A. Durrani, E. E. Khawaja, and J. Shirokoff, J. Phys. D, 35, 910 (2002). https://doi.org/10.1088/0022-3727/35/9/312
  15. N. Dewan, V. Gupta, K. Sreenivas, and R. S. Katiuar, J. Appl. Phys., 101, 084910 (2007). https://doi.org/10.1063/1.2717139
  16. L. I. Qinghui, G. U. Donghong, and G. A. N. Fuxi, J. Mater. Sci. Technol., 20, 678 (2004).
  17. W. S. Rodney, and R. J. Spindler, J. Opt. Soc. Am., 44, 667 (1954). https://doi.org/10.1364/JOSA.44.000667