DOI QR코드

DOI QR Code

Magnetoelectric Characteristics on Layered Ni-PZT-Ni, Co, Fe Composites for Magnetic Field Sensor

자기센서용 Ni-PZT-Ni, Co, Fe 적층구조 소자의 ME 특성

  • Ryu, Ji-Goo (Department of Electronic Engineering, Pukyong National University) ;
  • Jeon, Seong-Jeub (Department of Electronic Engineering, Pukyong National University)
  • Received : 2014.12.29
  • Accepted : 2015.01.05
  • Published : 2015.02.01

Abstract

The magnetoelectric characteristics on layered Ni-PZT-Ni, Co, Fe composites by epoxy bonding for magnetic field sensor were investigated in the low-frequency range. The ME coefficient of Ni-PZT-Ni, Ni-PZT-Co and Ni-PZT-Fe composites reaches a maximum of $200mV/cm{\cdot}Oe$ at $H_{dc}=110$ Oe, $106mV/cm{\cdot}Oe$ at $H_{dc}=90$ Oe and $87mV/cm{\cdot}Oe$ at $H_{dc}=160$ Oe, respectively. A trend of ME charateristics on Ni-PZT-Co, Ni-PZT-Fe composites was similar to that of Ni-PZT-Ni composites. The ME output voltage shows linearly proportional to ac field $H_{ac}$ and is about 0~150 mV at $H_{ac}$=0~7 Oe and f=110 Hz in the typical Ni-PZT-Ni sample. The frequency shift effect due to the load resistance $R_L$ shows that the frequency range for magnetic field sensor application can be modulated with appropriate load resistance $R_L$. This sample will allow for a low-magnetic ac field sensor in the low-frequency (near f=110 Hz).

Keywords

References

  1. C. W. Nan, Phys. Rev., B50, 6082 (1994).
  2. S. V. Suryanarayana, Bull. Mater. Sci., 17, 1259 (1994). https://doi.org/10.1007/BF02747225
  3. J. Ryu, S. Priya, K. Uchino, and H. E. Kim, J. Electroceram., 8, 107 (2002). https://doi.org/10.1023/A:1020599728432
  4. C. W. Nan, M. I. Bichurin, S. D. Dong, D. Viehland, and G. Strinivasan, J. Appl. Phys., 103, 031101 (2008). https://doi.org/10.1063/1.2836410
  5. R. Grossinger, G. V. Duong, and R. Sato-Turtelli, J. Magn. Magnetic Mater., 320, 1972 (2008). https://doi.org/10.1016/j.jmmm.2008.02.031
  6. J. Ryu, A. V. Carazo, K. Uchino, and H. E. Kim, Jpn. J. Appl. Phys., 40, 4948 (2001). https://doi.org/10.1143/JJAP.40.4948
  7. J. Zhai, Z. D. Xing, S. X. Dong, L. F. Li, and D. Viehland, J. Am. Ceram. Soc., 91, 351 (2008). https://doi.org/10.1111/j.1551-2916.2008.02259.x
  8. D. T. Huong Giang, P. A. Duc, N. T. Ngoc, and N. H. Duc, Sensor and Actuator, A179, 78 (2012).
  9. V. M Laletin, N. Paddubnaya, G. Srinivasan, C. P. De Vreugd, M. I. Bichurin, V. M. Petrov, and D. A. Fillippov, Appl. Phys. Letter., 87, 222507 (2005). https://doi.org/10.1063/1.2137450
  10. K. Bi, Y. G. Wang, and W. Wu, Sensor and Actuators., A165, 48 (2011).
  11. K. Bi, Y. G. Wang, W. Wu, and D. A. Pan, J. Phys. D: Appl. Phys., 43, 132002 (2010). https://doi.org/10.1088/0022-3727/43/13/132002
  12. K. Bi, Y. G. Wang, and W. Wu, Scripa Materialia, 63, 589 (2010). https://doi.org/10.1016/j.scriptamat.2010.06.003
  13. D. R. Patil, R. C. Kambale, Y. Chai, W. H. Yoon, D. Y. Jeong, D. S. Park, J. W. Kim, J. J. Choi, C. W. Ahn, B. D. Hahn, S. Zhang, K. H. Kim, and J. H. Ryu, Appl. Phys. Lett., 103, 052907 (2013). https://doi.org/10.1063/1.4817383
  14. Y. K. Fetisoy, A. A. Bush, K. E. Kamentsev, A. Y. Ostashchenko, and G. Srinivasan, IEEE Sensor Journal., 6, 935 (2006). https://doi.org/10.1109/JSEN.2006.877989
  15. A. A. Bush, K. E. Kamentsev, V. F. Meshcheryakov, Y. K. Fetisov, D. V. Chashin, and L. Y. Fetisov, ISSN 1063-7842, Technical Physics., 54, 1342 (2009).
  16. J. G. Ryu and S. T. Chung, J. Sensor Sci.& Tech., 22, 379 (2013). https://doi.org/10.5369/JSST.2013.22.6.379
  17. G. V. Duong, R. Groessinger, M. Schoenhart, and D. Bueno-Nasgues, J. Magn. Magnetic Mater., 316, 390 (2007). https://doi.org/10.1016/j.jmmm.2007.03.185
  18. D. A. Pan, Y. Bai, W. Y. Chu, and L. J. Qiao, J. Phys; Condens Matter, 20, 025203 (2008). https://doi.org/10.1088/0953-8984/20/02/025203
  19. C. W. Nan, G. Liu, and Y. Lin, Appl. Phys. Lett., 83, 4366 (2003). https://doi.org/10.1063/1.1630157
  20. G. Srinivasan, E. T. Rasmussen, and R. Hayes, Phys. Rev., B67, 014418 (2004).
  21. N. H. Duc and D.T.H. Giang, J. Alloys compd., 449, 214 (2008). https://doi.org/10.1016/j.jallcom.2006.01.121
  22. J. Ryu, S. Priya, A. V. Carazo, K. Uchino, and H. E. Kim, J. Am. Ceram. Soc., 84, 2905 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb01113.x
  23. Y. J. Wang, X. G. Zhao, W. N. Di, H. S. LuO, and S. W. Or, Appl. Phys. Lett., 95, 143503 (2009). https://doi.org/10.1063/1.3246148
  24. Y. J. Wang, X. G. Zhao, J. Jiao, L. H. Liu, W. N. Di, H. S. Luo, and S. Or, J. Alloys Compd., 500, 224 (2010). https://doi.org/10.1016/j.jallcom.2010.04.009
  25. S. T. Chung and J. G. Ryu., J. KIEEME, 26, 515 (2013).
  26. S. Dong, J. Zhai, Z. P. Xing, J. F. Li, and D. Viehland, Appl. Phys. Lett., 86, 102901 (2005). https://doi.org/10.1063/1.1881784
  27. L. Wang, Z. F. Du, C. F. Fan, L. H. Xu, H. P. Zhang, and D. L. Zhao, J. Alloys Compd., 509, 7870 (2011). https://doi.org/10.1016/j.jallcom.2011.04.050
  28. D. C. Pan, Y. Bai, W. Y. Chu, and L. J. Qiao, Smart Mater. Struct., 16, 2501 (2007). https://doi.org/10.1088/0964-1726/16/6/054
  29. W. Wu, Y. G. Wang, and K. Bi, J. Magn. Magnetic Mater., 323, 422 (2011). https://doi.org/10.1016/j.jmmm.2010.09.034

Cited by

  1. Enhanced Self-Biased Magnetoelectric Coupling in Laser-Annealed Pb(Zr,Ti)O3 Thick Film Deposited on Ni Foil 2018, https://doi.org/10.1021/acsami.7b16706