DOI QR코드

DOI QR Code

Absorption Rate Variation of TiNOx/Ti/Al Films Depending on N2 Gas Flow Rate

N2 Gas 유량에 따른 TiNOx/Ti/Al 흡수율 변화

  • Kim, Jin-Gyun (Department of Material Engineering, Chungbuk National University) ;
  • Jang, Gun-Eik (Department of Material Engineering, Chungbuk National University) ;
  • Kim, Hyun-Hoo (Department of Display Engineering, Doowon Technical University)
  • 김진균 (충북대학교 재료공학과) ;
  • 장건익 (충북대학교 재료공학과) ;
  • 김현후 (두원공과대학교 디스플레이공학과)
  • Received : 2014.10.27
  • Accepted : 2014.12.29
  • Published : 2015.02.01

Abstract

Ti was deposited on the Al substrate using DC magnetron sputtering with changing the $N_2$ gas for the possible application of a solar absorbing layer. $N_2$ gas ranged from 50 to 75 sccm was systematically applied in the 5 sccm interval and the variation of the absorption rate was investigated. Microstructural examination and elemental analysis indicate that Ti was reacted with $N_2$ gas and formed $TiNO_x$ compound. As compared with the film without any exposure of $N_2$ gas, absorption rate improved by more than 20%. Typically the average absorption of $TiNO_x$ fim with 65% of $N_2$ gas was about 99% in the visible range, and the average absorption was more than 90% in the infrared absorption region respectively.

Keywords

References

  1. Q. C. Zhang, Y. Yin, and D. R. Mills, Sol. Energ. Matater. Sol. Cells, 40, 43 (1996). https://doi.org/10.1016/0927-0248(95)00078-X
  2. C. G. Granqvist and G. A. Niklasson, J. Appl. Phys., 49, 3512 (1978). https://doi.org/10.1063/1.325263
  3. Z. Y. Nuru, C. J. Arendse, R. Nemutudi, O. Nemraoui, and M. Maaza, Physica B: Condensed Matter, 407, 1634 (2012). https://doi.org/10.1016/j.physb.2011.09.104
  4. M. Lanxner and Z. Elgat, Proc SPIE, 1272, 240 (1990).
  5. X. Du and C. Wang, Thin Solid Films, 516, 3971 (2008). https://doi.org/10.1016/j.tsf.2007.07.193
  6. J. Cheng, C. Wang, and W. Wang, Sol. Energ. Matater. Sol. Cells, 109, 204 (2013). https://doi.org/10.1016/j.solmat.2012.11.010
  7. Q. C. Zhang, J. Phys. D Appl. Phys., 31, 355 (1998). https://doi.org/10.1088/0022-3727/31/4/003
  8. J. Wang and B. Wei, Phys. Status Solidi. A, 208, 664 (2011). https://doi.org/10.1002/pssa.201026301
  9. A. Antonaia and A. Castaldo, Sol. Energ. Matater. Sol. Cells, 94, 1604 (2010). https://doi.org/10.1016/j.solmat.2010.04.080
  10. Q. C. Zhang, M. S. Hadavi, K. D. Lee, and Y. G. Shen, J. Phys. D Appl. Phys., 36, 723 (2003). https://doi.org/10.1088/0022-3727/36/6/315
  11. N. Selvakumar, N. T. Manikandanath, A. Biswas, and H. C. Barshilia, Sol. Energ. Matater. Sol. Cells, 102, 86 (2012). https://doi.org/10.1016/j.solmat.2012.03.021
  12. Y. Xue, C. Wang, and W. Wang, Sol Energy, 96, 113 (2013). https://doi.org/10.1016/j.solener.2013.07.012
  13. H. C. Barshilia and P. Kumar, Sol. Energ. Matater. Sol. Cells, 95, 1707 (2011). https://doi.org/10.1016/j.solmat.2011.01.034
  14. Y. Liu, C. Wang, and Y. Xue, Sol. Energ. Matater. Sol. Cells, 96, 131 (2012). https://doi.org/10.1016/j.solmat.2011.09.034
  15. A. Biswas and D. Bhattacharyya, Appl. Surf. Sci., 254, 1694 (2008). https://doi.org/10.1016/j.apsusc.2007.07.109
  16. H. C. Barshilia and N. Selvakumar, Sol. Energ. Matater. Sol. Cells, 92, 1425 (2008). https://doi.org/10.1016/j.solmat.2008.06.004