DOI QR코드

DOI QR Code

분사처리 후 양극산화 처리한 임플란트 표면이 골모 유사 세포의 반응에 미치는 영향

The effect of blasting and anodizing-combined treatment of implant surface on response of osteoblast-like cell

  • 서보용 (부산대학교 치과대학 치과보철학교실) ;
  • 김영민 (부산대학교 치과대학 구강해부학교실) ;
  • 최재원 (부산대학교 치과대학 치과보철학교실) ;
  • 윤미정 (부산대학교 치과대학 치과보철학교실) ;
  • 전영찬 (부산대학교 치과대학 치과보철학교실) ;
  • 정창모 (부산대학교 치과대학 치과보철학교실) ;
  • 김규천 (부산대학교 치과대학 구강해부학교실) ;
  • 허중보 (부산대학교 치과대학 치과보철학교실)
  • Seo, Bo-Yong (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Kim, Young-Min (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Choi, Jae-Won (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Yun, Mi-Jung (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Jeon, Young-Chan (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Jeong, Chang-Mo (Department of Prosthodontics, School of Dentistry, Pusan National University) ;
  • Kim, Gyu-Cheon (Department of Oral Anatomy, School of Dentistry, Pusan National University) ;
  • Huh, Jung-Bo (Department of Prosthodontics, School of Dentistry, Pusan National University)
  • 투고 : 2014.11.07
  • 심사 : 2015.01.07
  • 발행 : 2015.01.30

초록

목적: 본 연구는 Tricalcium phosphate 입자를 사용한 모재분사 후 양극산화처리를 한 임플란트 표면의 특성을 분석하고, 골모유사세포의 반응을 평가하고자 하였다. 재료 및 방법: 직경 10 mm, 두께 3.0 mm 크기의 Grade IV 타이타늄 디스크를 시편으로 사용하였으며, 양극산화처리(ASD)군, 모재 분사 후 양극산화(RBM/ASD)군, 대조군(machined surface)으로 나누어 표면처리하였다. 표면처리 후 FE-SEM, 에너지분산분광기와 주사전자현미경을 사용하여 표면특성을 평가하였다. 세포의 부착을 평가하기 위해 골모유사세포를 이용해 crystal violet assay를 통해 세포부착을 평가하고, 세포 형태는 공초점 레이저 현미경을 사용하여 관찰하였다. 세포증식을 평가하기 위해 XTT 시험을, 세포분화는 역전사 중합효소연쇄반응을 사용하였으며 침착된 칼슘의 양을 측정하기 위해 Alizarin red S stain 을 이용하였다. 비교분석은 one-way ANOVA (SPSS version 18.0)로 유의수준 5%에서 검정하였다. 결과: ASD군과 RBM/ASD군에서, 분화구 모양의 표면 형상이 나타났으며, 대조군과 비교하여 산소와 인산 이온이 관찰되었다. 단위면적당 거칠기는 대조군에서 $0.08{\pm}0.04{\mu}m$, ASD군에서 $0.52{\pm}0.14{\mu}m$, RBM/ASD군에서 $1.45{\pm}0.25{\mu}m$를 보였다. 세포반응실험에서, ASD군과 RBM/ASD군이 대조군에 비해 세포의 부착정도가 높았으며 대조군이 세포증식에서 가장 높은 값을 보였다(P<.05). RT-PCR 실험에서, RBM/ASD군이 다른 군들보다 높은 ALP를 보였다(P<.05). ASD군과 비교했을 때 RBM/ASD군은 세포부착과 증식 정도에서 큰 값을 보였다(P<.05). 결론: 본 연구의 한계내에서 모재분사 후 양극산화 처리한 티타늄 표면 처리 방식이 단순 양극산화 처리한 군이나 대조군보다 골모유사세포의 반응에 효과적인 방법임을 확인하였다.

Purpose: The purpose of this study is to examine characteristics of implant surface with RBM and anodizing treatments, and to evaluate the responses of osteoblast-like cell (MG-63 cell). Materials and methods: Grade IV titanium disks were fabricated (Diameter 10 mm, thickness 3 mm). Anodizing treatment (ASD) group, RBM and anodizing treatment (RBM/ASD) group, control (machined surface) group were divided. In this study, osteoblast-like cell was used for experiments. The experiments consist of surface characteristics evaluation by FE-SEM images, energy dispersive spectroscopy and stereo-SEM. In order to evaluate cell adhesion evaluation by crystal violet assay and observe cells form by confocal laser microscopy. To assess cell proliferation by XTT assay, cell differentiation by RT-PCR and mineralization by Alizarin red S stain assay. ELISA analyzer was used for Quantitative evaluation. Comparative analysis was run by one-way ANOVA (SPSS version 18.0). Differences were considered statistically significant at P<.05. Results: In ASD group and RBM/ASD group, the surface shape of the crater was observed and components of oxygen and phosphate ions in comparison with the control group were detected. The surface average roughness was obtained $0.08{\pm}0.04{\mu}m$ in the control group, $0.52{\pm}0.14{\mu}m$ in ASD group and $1.45{\pm}0.25{\mu}m$ in RBM/ASD group. In cell response experiments, ASD group and RBM/ASD group were significantly higher values than control group in cell adhesion and mineralization phase, control group was the highest values in the proliferative phase. In RT-PCR experiments, RBM/ASD group was showed higher ALP activity than other groups. RBM/ASD group in comparison with ASD group was significantly higher value for cell adhesion and proliferation phase. Conclusion: In the limitation of this study, we are concluded that the surface treatment with RBM/ASD seems more effective than ASD alone or machined surface on cellular response.

키워드

참고문헌

  1. Branemark PI, Adell R, Breine U, Hansson BO, Lindstrom J, Ohlsson A. Intra-osseous anchorage of dental prostheses. I. Experimental studies. Scand J Plast Reconstr Surg 1969;3:81-100. https://doi.org/10.3109/02844316909036699
  2. Schroeder A, van der Zypen E, Stich H, Sutter F. The reactions of bone, connective tissue, and epithelium to endosteal implants with titanium-sprayed surfaces. J Maxillofac Surg 1981; 9:15-25. https://doi.org/10.1016/S0301-0503(81)80007-0
  3. Albrektsson T, Zarb G, Worthington P, Eriksson AR. The longterm efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986; 1:11-25.
  4. Le Gue′hennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844-54. https://doi.org/10.1016/j.dental.2006.06.025
  5. Buser D, Schenk RK, Steinemann S, Fiorellini JP, Fox CH, Stich H. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J Biomed Mater Res 1991;25:889-902. https://doi.org/10.1002/jbm.820250708
  6. Albrektsson T, Branemark PI, Hansson HA, Lindstrom J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand 1981;52:155-70. https://doi.org/10.3109/17453678108991776
  7. Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: a histometric study in the canine mandible. J Biomed Mater Res 1998;40:1-11. https://doi.org/10.1002/(SICI)1097-4636(199804)40:1<1::AID-JBM1>3.0.CO;2-Q
  8. Roberts WE, Garetto LP, DeCastro RA. Remodeling of devitalized bone threatens periosteal margin integrity of endosseous titanium implants with threaded or smooth surfaces: indications for provisional loading and axially directed occlusion. J Indiana Dent Assoc 1989;68:19-24.
  9. Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG. Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 2004;83:529-33. https://doi.org/10.1177/154405910408300704
  10. He FM, Yang GL, Li YN, Wang XX, Zhao SF. Early bone response to sandblasted, dual acid-etched and H2O2/HCl treated titanium implants: an experimental study in the rabbit. Int J Oral Maxillofac Surg 2009;38:677-81. https://doi.org/10.1016/j.ijom.2009.03.716
  11. Yang GL, He FM, Yang XF, Wang XX, Zhao SF. Bone responses to titanium implants surface-roughened by sandblasted and double etched treatments in a rabbit model. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:516-24. https://doi.org/10.1016/j.tripleo.2008.03.017
  12. Aparicio C, Gil FJ, Fonseca C, Barbosa M, Planell JA. Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials 2003;24:263-73. https://doi.org/10.1016/S0142-9612(02)00314-9
  13. Piattelli M, Scarano A, Paolantonio M, Iezzi G, Petrone G, Piattelli A. Bone response to machined and resorbable blast material titanium implants: an experimental study in rabbits. J Oral Implantol 2002;28:2-8. https://doi.org/10.1563/1548-1336(2002)028<0002:BRTMAR>2.3.CO;2
  14. Sul YT, Johansson CB, Petronis S, Krozer A, Jeong Y, Wennerberg A, Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials 2002;23:491-501. https://doi.org/10.1016/S0142-9612(01)00131-4
  15. Lausmaa J. Surface spectroscopic characterization of titanium implant materials. J Electron Spectrosc Relat Phenom 1996;81:343-61. https://doi.org/10.1016/0368-2048(95)02530-8
  16. Olefjord I, Hansson S. Surface analysis of four dental implant systems. Int J Oral Maxillofac Implants 1993;8:32-40.
  17. Machnee CH, Wagner WC, Jaarda MJ, Lang BR. Identification of oxide layers of commercially pure titanium in response to cleaning procedures. Int J Oral Maxillofac Implants 1993;8:529-33.
  18. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1- review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 2004;17:536-43.
  19. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 2- review focusing on clinical knowledge of different surfaces. Int J Prosthodont 2004;17:544-64.
  20. Stadlinger B, Lode AT, Eckelt U, Range U, Schlottig F, Hefti T, Mai R. Surface-conditioned dental implants: an animal study on bone formation. J Clin Periodontol 2009;36:882-91. https://doi.org/10.1111/j.1600-051X.2009.01466.x
  21. Lee HJ, Song KY, Yoon TH. Effect of different surface treatments to increase biocompatibility of dental implant. J Korean Acad Prosthodont 2006;44:594-605.
  22. Martin JY, Dean DD, Cochran DL, Simpson J, Boyan BD, Schwartz Z. Proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63) cultured on previously used titanium surfaces. Clin Oral Implants Res 1996;7:27-37. https://doi.org/10.1034/j.1600-0501.1996.070104.x
  23. Zhu X, Ong JL, Kim S, Kim K. Surface characteristics and structure of anodic oxide films containing Ca and P on a titanium implant material. J Biomed Mater Res 2002;60:333-8. https://doi.org/10.1002/jbm.10105
  24. Macak JM, Tsuchiya H, Taveira L, Ghicov A, Schmuki P. Selforganized nanotubular oxide layers on Ti-6Al-7Nb and Ti-6Al- 4V formed by anodization in NH4F solutions. J Biomed Mater Res A 2005;75:928-33.
  25. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992;69:11-25. https://doi.org/10.1016/0092-8674(92)90115-S
  26. Villarreal DR, Sogal A, Ong JL. Protein adsorption and osteoblast responses to different calcium phosphate surfaces. J Oral Implantol 1998;24:67-73. https://doi.org/10.1563/1548-1336(1998)024<0067:PAAORT>2.3.CO;2
  27. Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J Jr, Dean DD, Cochran DL, Boyan BD. Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). J Biomed Mater Res 1995;29:389-401. https://doi.org/10.1002/jbm.820290314
  28. Wong M, Eulenberger J, Schenk R, Hunziker E. Effect of surface topology on the osseointegration of implant materials in trabecular bone. J Biomed Mater Res 1995;29:1567-75. https://doi.org/10.1002/jbm.820291213
  29. Wennerberg A. The importance of surface roughness for implant incorporation. Int J Mach Tools Manufact 1998;38:657-62. https://doi.org/10.1016/S0890-6955(97)00114-4
  30. Lincks J, Boyan BD, Blanchard CR, Lohmann CH, Liu Y, Cochran DL, Dean DD, Schwartz Z. Response of MG63 osteoblastlike cells to titanium and titanium alloy is dependent on surface roughness and composition. Biomaterials 1998;19:2219-32. https://doi.org/10.1016/S0142-9612(98)00144-6
  31. Kim HJ, Son MK, Park JI, Chung HJ, Kim YJ. Biological response of primary rat calvarial cell by surface treatment of Ti-8Ta- 8Nb alloy. J Korean Acad Periodontol 2008;38:595-602. https://doi.org/10.5051/jkape.2008.38.4.595