참고문헌
- R. P. Agarwal, M. Bohner, S. R. Grace, and D. O'Regan, Discrete Oscillation Theory, Hindawi Publishing Corporation, New York, 2005.
- M. Bohner, G. E. Chatzarakis, and I. P. Stavroulakis, Qualitative behavior of solutions of difference equations with several oscillating coefficients, Arab. J. Math. 3 (2014), no. 3, 1-13. https://doi.org/10.1007/s40065-013-0087-9
- G. E. Chatzarakis, S. Pinelas, and I. P. Stavroulakis, Oscillation of difference equations with several deviated arguments, Aequat. Math. 88 (2014), 105-123. https://doi.org/10.1007/s00010-013-0238-2
- N. Fukagai and T. Kusano, Oscillation theory of first order functional-differential equations with deviating arguments, Ann. Mat. Pura Appl. (4) 136 (1984), 95-117. https://doi.org/10.1007/BF01773379
- M. K. Grammatikopoulos, R. Koplatadze, and I. P. Stavroulakis, On the oscillation of solutions of first-order differential equations with retarded arguments, Georgian Math. J. 10 (2003), no. 1, 63-76.
- I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations, Clarendon Press, Oxford, 1991.
- H. Khatibzadeh, An oscillation criterion for a delay difference equation, Comput. Math. Appl. 57 (2009), no. 1, 37-41. https://doi.org/10.1016/j.camwa.2008.07.041
- M. R. Kulenovic and M. K. Grammatikopoulos, First order functional differential inequalities with oscillating coefficients, Nonlinear Anal. 8 (1984), no. 9, 1043-1054. https://doi.org/10.1016/0362-546X(84)90098-1
- G. Ladas, G. Sficas, and I. P. Stavroulakis, Functional-differential inequalities and equations with oscillating coefficients, Trends in theory and practice of nonlinear differential equations (Arlington, Tex., 1982), 277-284, Lecture Notes in Pure and Appl. Math., 90, Marcel Dekker, New York, 1984.
- V. Lakshmikantham and D. Trigiante, Theory of Difference Equations: Numerical Methods and Applications, Mathematics in Science and Engineering, 181, Academic Press, Boston, MA, 1998.
- X. Li, D. Zhu and H. Wang, Oscillation for advanced differential equations with oscillating coefficients, Int. J. Math. Math. Sci. 2003 (2003), no. 33, 2109-2118. https://doi.org/10.1155/S0161171203209030
- C. Qian, G. Ladas, and J. Yan, Oscillation of difference equations with oscillating coefficients, Rad. Mat. 8 (1992), no. 1, 55-65.
- X. H. Tang and S. S. Cheng, An oscillation criterion for linear difference equations with oscillating coefficients, J. Comput. Appl. Math. 132 (2001), no. 2, 319-329. https://doi.org/10.1016/S0377-0427(00)00436-2
- T. Xianhua, Oscillation of first order delay differential equations with oscillating coefficients, Appl. Math. J. Chinese Univ. Ser. B 15 (2000), no. 3, 252-258. https://doi.org/10.1007/s11766-000-0048-x
- W. Yan and J. Yan, Comparison and oscillation results for delay difference equations with oscillating coefficients, Internat. J. Math. Math. Sci. 19 (1996), no. 1, 171-176. https://doi.org/10.1155/S0161171296000245
- J. S. Yu and X. H. Tang, Sufficient conditions for the oscillation of linear delay difference equations with oscillating coefficients, J. Math. Anal. Appl. 250 (2000), no. 2, 735-742. https://doi.org/10.1006/jmaa.2000.7120
피인용 문헌
- Oscillation results for difference equations with oscillating coefficients vol.2015, pp.1, 2015, https://doi.org/10.1186/s13662-015-0391-0