DOI QR코드

DOI QR Code

ON HARMONIC CONVOLUTIONS INVOLVING A VERTICAL STRIP MAPPING

  • Kumar, Raj (Department of Mathematics DAV University, Sant Longowal Institute of Engineering and Technology) ;
  • Gupta, Sushma (Sant Longowal Institute of Engineering and Technology) ;
  • Singh, Sukhjit (Sant Longowal Institute of Engineering and Technology) ;
  • Dorff, Michael (Department of Mathematics Brigham Young University)
  • Received : 2013.08.28
  • Published : 2015.01.31

Abstract

Let $f_{\beta}=h_{\beta}+\bar{g}_{\beta}$ and $F_a=H_a+\bar{G}_a$ be harmonic mappings obtained by shearing of analytic mappings $h_{\beta}+g_{\beta}=1/(2isin{\beta})log\((1+ze^{i{\beta}})/(1+ze^{-i{\beta}})\)$, 0 < ${\beta}$ < ${\pi}$ and $H_a+G_a=z/(1-z)$, respectively. Kumar et al. [7] conjectured that if ${\omega}(z)=e^{i{\theta}}z^n({\theta}{\in}\mathbb{R},n{\in}\mathbb{N})$ and ${\omega}_a(z)=(a-z)/(1-az)$, $a{\in}(-1,1)$ are dilatations of $f_{\beta}$ and $F_a$, respectively, then $F_a\tilde{\ast}f_{\beta}{\in}S^0_H$ and is convex in the direction of the real axis, provided $a{\in}[(n-2)/(n+2),1)$. They claimed to have verified the result for n = 1, 2, 3 and 4 only. In the present paper, we settle the above conjecture, in the affirmative, for ${\beta}={\pi}/2$ and for all $n{\in}\mathbb{N}$.

Keywords

References

  1. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A. I Math. 9 (1984), 3-25. https://doi.org/10.5186/aasfm.1984.0905
  2. M. Dorff, Harmonic univalent mappings onto asymmetric vertical strips, Computational methods and function theory 1997 (Nicosia), 171-175, Ser. Approx. Decompos., 11, World Sci. Publ., River Edge, NJ, 1999.
  3. M. Dorff, Convolutions of planar harmonic convex mappings, Complex Var. Theory Appl. 45 (2001), no. 3, 263-271. https://doi.org/10.1080/17476930108815381
  4. M. Dorff, M. Nowak, and M.Woloszkiewicz, Convolutions of harmonic convex mappings, Complex Var. Elliptic Equ. 57 (2012), no. 5, 489-503. https://doi.org/10.1080/17476933.2010.487211
  5. W. Hengartner and G. Schober, Univalent harmonic functions, Trans. Amer. Math. Soc. 299 (1987), no. 1, 1-31. https://doi.org/10.1090/S0002-9947-1987-0869396-9
  6. R. Kumar, M. Dorff, S. Gupta, and S. Singh, Convolution properties of some harmonic mappings in the right half-plane, see arXiv:1206.4364.
  7. R. Kumar, S. Gupta, S. Singh, and M. Dorff, An application of Cohn's rule to convolutions of univalent harmonic mappings, see arXiv:1306.5375.
  8. L. Li and S. Ponnusamy, Convolutions of slanted half-plane harmonic mappings, Analysis (Munich) 33 (2013), no. 2, 159-176. https://doi.org/10.1524/anly.2013.1170
  9. L. Li and S. Ponnusamy, Sections of stable harmonic convex functions, Nonlinear Analysis 2014 (2014), 11 pages; http:/dx.doi.org/10.1016/j.na.2014.06.005.
  10. L. Li and S. Ponnusamy, Convolutions of harmonic mappings convex in one direction, Complex Anal. Oper. Th. 2014 (2014), 17 pages (available online: DOI 10.1007/s11785-014-0394-y).
  11. L. Li, S. Ponnusamy, and M. Vuorinen, The minimal surfaces over the slanted halfplanes, vertical strip and singlr slit, See http://arxiv.org/pdf/1204.2890.pdf
  12. Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, London Mathematical Society Monographs New Series, Vol. 26, Oxford University Press, Oxford, 2002.

Cited by

  1. On harmonic K-quasiconformal mappings associated with asymmetric vertical strips vol.31, pp.12, 2015, https://doi.org/10.1007/s10114-015-4773-8
  2. A NOTE ON CONVEXITY OF CONVOLUTIONS OF HARMONIC MAPPINGS vol.52, pp.6, 2015, https://doi.org/10.4134/BKMS.2015.52.6.1925
  3. NOTE ON THE CONVOLUTION OF HARMONIC MAPPINGS pp.1755-1633, 2019, https://doi.org/10.1017/S0004972719000029