References
- P. G. Cassaza, Approximate properties, In: W. B. Johnson, J. Lindenstrauss(eds.), Handbook of the Geometry of Banach Spaces, Volume 1, 271-316, Elsevier, 2001.
- C. Choi and J. M. Kim, Weak and quasi approximation properties in Banach spaces, J. Math. Anal. Appl. 316 (2006), no. 2, 722-735. https://doi.org/10.1016/j.jmaa.2005.05.013
- C. Choi and J. M. Kim, Hahn-Banach theorem for the compact convergence topology and applications to approximation properties, Houston J. Math. 37 (2011), no. 4, 1157-1164.
- T. Figiel and W. B. Johnson, The approximation property does not imply the bounded approximation property, Proc. Amer. Math. Soc. 41 (1973), 197-200. https://doi.org/10.1090/S0002-9939-1973-0341032-5
- A. Grothendieck, Produits tensoriels topologiques et espaces nucleires, Mem. Amer. Math. Soc. 16 (1955), no. 16, 140 pp.
- J. Johnson, Remarks on Banach spaces of compact operators, J. Funct. Anal. 32 (1979), no. 3, 304-311. https://doi.org/10.1016/0022-1236(79)90042-9
- K. Y. Lee, Dual spaces of compact operators space and the weak Radon-Nikodym property, Studia Math. 210 (2012), no. 3, 247-260. https://doi.org/10.4064/sm210-3-5
- A. Lima, O. Nygraard, and E. Oja, Isometric factorization of weakly compact operators and the approximation property, Israel J. Math. 119 (2000), 325-348. https://doi.org/10.1007/BF02810673
- A. Lima and E. Oja, The weak metric approximation property, Math. Ann. 333 (2005), no. 3, 471-484. https://doi.org/10.1007/s00208-005-0656-0
-
J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain
${\ell}_1$ and whose duals are non-separable, Studia Math. 54 (1975), no. 1, 81-105. https://doi.org/10.4064/sm-54-1-81-105 - K. Musial, The weak Radon-Nikodym property in Banach spaces, Studia Math. 64 (1978), no. 2, 151-174.
- E. Oja, The impact of the Radon-Nikodym property on the weak bounded approximation property, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. 100 (2006), 325-331.
- R. A. Ryan, Introduction to Tensor Product of Banach Spaces, Springer, London, 2002.
Cited by
- Nuclear Pseudo-Differential Operators in Besov Spaces on Compact Lie Groups vol.23, pp.5, 2017, https://doi.org/10.1007/s00041-016-9512-8