References
- J. C. Baldi, R. D. Jackson, R. Moraille, and W. J. Mysiw, "Muscle atrophy is prevented in patients with acute spinal cord injury using functional electrical stimulation", Spinal Cord, Vol. 36, pp. 463-469, 1998. https://doi.org/10.1038/sj.sc.3100679
- N. Hoshimiya, A. Naito, M. Yajima, and Y. Handa, "A multichannel FES system for the restoration of motor functions in high spinal cord injury patients: a respiration-controlled system for multijoint upper extremity", IEEE T Bio-Med Eng, Vol. 36, pp. 754-760, 1989. https://doi.org/10.1109/10.32108
- P. H. Peckham and J. S. Knutson, "Functional electrical stimulation for neuromuscular applications", Annu. Rev. Biomed. Eng., Vol. 7, pp. 327-360, 2005. https://doi.org/10.1146/annurev.bioeng.6.040803.140103
- G. H. Creasey, J. H. Grill, M. Korsten, H. Sang, R. Betz, R. Anderson, and J. Walter, "An implantable neuroprosthesis for restoring bladder and bowel control to patients with spinal cord injuries: A multicenter trial", Arch. Phys. Med. Rehabil., Vol. 82, pp. 1512-1519, 2001. https://doi.org/10.1053/apmr.2001.25911
- N. J. M. Rijkhoff, "Neuroprostheses to treat neurogenic bladder dysfunction: current status and future perspectives", Childs. Nerv. Syst., Vol. 20, pp. 75-86, 2004. https://doi.org/10.1007/s00381-003-0859-1
- P. E. V. Vankerrebroeck, E. L. Koldewijn, and F. M. J. Debruyne, "Worldwide Experience with the Finetech-Brindley sacral anterior root stimulator", Neurourol. Urodyn., Vol. 12, pp. 497-503, 1993. https://doi.org/10.1002/nau.1930120511
- R. Davis, J. Patrick, and A. Barriskill, "Development of functional electrical stimulators utilizing cochlear implant technology", Med. Eng. Phys., Vol. 23, pp. 61-68, 2001. https://doi.org/10.1016/S1350-4533(01)00023-6
- B. S. Wilson, C. C. Finley, D. T. Lawson, R. D. Wolford, D. K. Eddington, and W. M. Rabinowitz, "Better speech recognition with cochlear implants", Nature, Vol. 352, pp. 236-238, 1991. https://doi.org/10.1038/352236a0
- M. W. Kim, M. K. Kim, K. W. Seong, H. G. Lim, E. S. Jung, J. H. Han, I. Y. Park, and J. H. Cho, "Vibration characteristic analysis of differential floating mass transducer using electrical model for fully-implantable middle ear hearing devices", J. Sensor Sci. & Tech., Vol. 16, No. 3, pp. 165-173, 2007. https://doi.org/10.5369/JSST.2007.16.3.165
- J. Coulombe, M. Sawan, and J. F. Gervais, "A highly flexible system for microstimulation of the visual cortex: Design and implementation", IEEE Trans. Biomed. Circuits. Syst., Vol. 1, pp. 258-269, 2007. https://doi.org/10.1109/TBCAS.2007.916026
- J. R. Hetling and M. S. Baig-Silva, "Neural prostheses for vision: Designing a functional interface with retinal neurons", Neurol. Res., Vol. 26, pp. 21-34, 2004. https://doi.org/10.1179/016164104773026499
- J. R. Wolpaw and D. J. McFarland, "Control of a twodimensional movement signal by a noninvasive brain-computer interface in humans", Proc. Natl. Acad. Sci. U. S. A., Vol. 101, pp. 17849-17854, 2004. https://doi.org/10.1073/pnas.0403504101
- M. A. Lebedev and M. A. L. Nicolelis, "Brain-machine interfaces: Past, present, and future", Trends Neurosci., Vol. 29, pp. 536-546, 2006. https://doi.org/10.1016/j.tins.2006.07.004
- M. A. L. Nicolelis, "Brain-machine interfaces to restore motor function and probe neural circuits", Nat. Rev. Neurosci., Vol. 4, pp. 417-422, 2003. https://doi.org/10.1038/nrn1105
- M. Degrauwe, E. Vittoz, and I. Verbauwhede, "A micropower CMOS-instrumentation amplifier", IEEE J Solid-St Circ, Vol. 20, pp. 805-807, 1985. https://doi.org/10.1109/JSSC.1985.1052386
- R. R. Harrison, P. T. Watkins, R. J. Kier, R. O. Lovejoy, D. J. Black, B. Greger, and F. Solzbacher, "A low-power integrated circuit for a wireless 100-electrode neural recording system", IEEE J Solid-St Circ, Vol. 42, pp. 123-133, 2007. https://doi.org/10.1109/JSSC.2006.886567
- A. L. Kip, D. U. Jeffrey, Y. Junyan, C. M. David, and R. K. Daryl, "Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film", J Neural Eng, Vol. 3, p. 59, 2006. https://doi.org/10.1088/1741-2560/3/1/007
- H. Yamato, M. Ohwa, and W. Wernet, "Stability of polypyrrole and poly (3, 4-ethylenedioxythiophene) for biosensor application", J. Electroanal. Chem., Vol. 397, pp.163-170, 1995. https://doi.org/10.1016/0022-0728(95)04156-8
- F. Beck, P. Braun, and M. Oberst, "Organic electrochemistry in the solid state-overoxidation of polypyrrole", Berich. Bunsen. Gesell., Vol. 91, pp. 967-974, 1987. https://doi.org/10.1002/bbpc.19870910927
- J. B. Schlenoff and H. Xu, "Evolution of physical and electrochemical properties of polypyrrole during extended oxidation", J. Electrochem. Soc., Vol. 139, pp. 2397-2401, 1992. https://doi.org/10.1149/1.2221238
- N. K. Guimard, N. Gomez, and C. E. Schmidt, "Conducting polymers in biomedical engineering", Prog. Polym. Sci., Vol. 32, pp. 876-921, 2007. https://doi.org/10.1016/j.progpolymsci.2007.05.012
- S. H. Lee, J. H. Jung, Y. M. Chae, J. K. F. Suh, and J. Y. Kang, "Fabrication and characterization of implantable and flexible nerve cuff electrodes with Pt, Ir and IrOx films deposited by RF sputtering", J. Micromech. Microeng., Vol. 20, 2010.
- J. U. Chu, K. I. Song, S. Han, S. H. Lee, J. Kim, J. Y. Kang, D. Hwang, J. K. Suh, K. Choi, and I. Yong, "Improvement of signal-to-interference ratio and signal-to-noise ratio in nerve cuff electrode systems", Physiol. Meas., Vol. 33, p. 943, 2012. https://doi.org/10.1088/0967-3334/33/6/943