DOI QR코드

DOI QR Code

A Metrics Set for Measuring Software Module Severity

소프트웨어 모듈 심각도 측정을 위한 메트릭 집합

  • Hong, Euy-Seok (School of Information Technology, Sungshin Women's University)
  • Received : 2014.09.15
  • Accepted : 2014.10.29
  • Published : 2015.01.31

Abstract

Defect severity that is a measure of the impact caused by the defect plays an important role in software quality activities because not all software defects are equal. Earlier studies have concentrated on defining defect severity levels, but there have almost never been trials of measuring module severity. In this paper, first, we define a defect severity metric in the form of an exponential function using the characteristics that defect severity values increase much faster than severity levels. Then we define a new metrics set for software module severity using the number of defects in a module and their defect severity metric values. In order to show the applicability of the proposed metrics, we performed an analytical validation using Weyuker's properties and experimental validation using NASA open data sets. The results show that ms is very useful for measuring the module severity and msd can be used to compare different systems in terms of module severity.

모든 소프트웨어 결함들이 시스템에 같은 정도의 영향을 미치는 것이 아니므로 결함이 미치는 충격의 정도를 나타내는 결함 심각도는 소프트웨어 품질 관련 작업들에 중요한 역할을 하고 있다. 결함 심각도 관련 기존 연구들은 심각도 레벨은 정의하였지만 품질 작업의 기본 단위인 모듈의 심각도에 관한 언급은 거의 없었다. 본 논문에서는 심각도 레벨이 증가함에 따라 심각도 값이 급격히 증가하는 심각도 성질을 이용하여 결함 심각도 메트릭을 지수 함수 형태로 정의한 후, 모듈 내부의 결함 수와 결함 심각도 메트릭에 기반한 새로운 모듈 심각도 메트릭 집합을 정의하였다. 제안 메트릭들의 적용가능성을 보이기 위해 Weyuker 기준들을 이용한 분석적 검증과 NASA 공개 데이터 집합을 이용한 실험적 검증을 수행하였으며, 제안 메트릭들 중 ms는 모듈의 심각도 정량화에, msd는 심각도에 기반한 시스템간의 비교에 매우 유용하게 사용될 수 있다는 것을 보였다.

Keywords

References

  1. IEEE Standard Classification for Software Anomalies, IEEE Std. 1044-2009.
  2. R. Shatnawi and W. Li, "The effectiveness of software metrics in identifying error-prone classes in post release software evolution process," Journal of Systems and Software, Vol.81, No.11, pp. 1868-1882, 2008. https://doi.org/10.1016/j.jss.2007.12.794
  3. C. Catal, "Software fault prediction:A literature review and current trends," Expert Systems with Applications, Vol.38, No.4, pp.4626-4636, 2011. https://doi.org/10.1016/j.eswa.2010.10.024
  4. T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell, "A Systematic Literature Review on Fault Prediction Performance in Software Engineering," IEEE Trans. Software Eng., Vol.38, No.6, pp. 1276-1304, 2012. https://doi.org/10.1109/TSE.2011.103
  5. D. E. Harter, C. F. Kemerer, and S. A. Slaughter, "Does Software Process Improvement Reduce the Severity of Defects? A Longitudinal Field Study," IEEE Trans. Software Eng., Vol.38, No.4, pp. 810-827, 2012. https://doi.org/10.1109/TSE.2011.63
  6. T. Menzies and A. Marcus, "Automated Severity Assessment of Software Defect Reports," Proc. of ICSM 2008, pp.346-355.
  7. Y. Zhou and H. Leung, "Empirical analysis of object-oriented design metrics for predicting high and low severity faults," IEEE Trans. Software Eng, Vol.32, No.10, pp.771-789, 2006. https://doi.org/10.1109/TSE.2006.102
  8. D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson, "Reflections on the NASA MDP data sets," IET Software, Vol.6, No.6, pp. 549-558, 2012. https://doi.org/10.1049/iet-sen.2011.0132
  9. N. Fenton, "Software Measurement: A Necessary Scientific Basis," IEEE Trans. Software Eng., Vol.20, No.3, pp.199-206, 1994. https://doi.org/10.1109/32.268921
  10. H. Zuse, Software Complexity Measures and Methods, Walter de Gruyter, 1991.
  11. E. J. Weyuker, "Evaluating Software Complexity Measures," IEEE Trans. Software Eng., Vol.14, No.9, pp.1357-1365, 1988. https://doi.org/10.1109/32.6178
  12. IEEE Standard Glossary of Software Engineering Terminology, IEEE Std. 610.12
  13. S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object Oriented Design," IEEE Trans. Software Eng., Vol.20, No.6, pp.476-493, 1994. https://doi.org/10.1109/32.295895
  14. E. Hong, "Ambiguity Analysis of Defectiveness in NASA MDP data sets," Journal of the Korea Society of IT Services, Vol.12, No.2, pp.361-371, 2013. https://doi.org/10.9716/KITS.2013.12.2.361

Cited by

  1. Prediction of software fault-prone classes using an unsupervised hybrid SOM algorithm pp.1573-7543, 2018, https://doi.org/10.1007/s10586-018-1923-7