DOI QR코드

DOI QR Code

Implementation and Performance Evaluation of a Video-Equipped Real-Time Fire Detection Method at Different Resolutions using a GPU

GPU를 이용한 다양한 해상도의 비디오기반 실시간 화재감지 방법 구현 및 성능평가

  • Shon, Dong-Koo (School of Electrical, Electronics, and Computer Engineering, University of Ulsan) ;
  • Kim, Cheol-Hong (School of Electronics and Computer Engineering, Chonnam National University) ;
  • Kim, Jong-Myon (School of Electrical, Electronics, and Computer Engineering, University of Ulsan)
  • 손동구 (울산대학교 전기전자컴퓨터공학과) ;
  • 김철홍 (전남대학교 전자컴퓨터공학부) ;
  • 김종면 (울산대학교 전기전자컴퓨터공학과)
  • Received : 2014.09.12
  • Accepted : 2014.12.06
  • Published : 2015.01.31

Abstract

In this paper, we propose an efficient parallel implementation method of a widely used complex four-stage fire detection algorithm using a graphics processing unit (GPU) to improve the performance of the algorithm and analyze the performance of the parallel implementation method. In addition, we use seven different resolution videos (QVGA, VGA, SVGA, XGA, SXGA+, UXGA, QXGA) as inputs of the four-stage fire detection algorithm. Moreover, we compare the performance of the GPU-based approach with that of the CPU implementation for each different resolution video. Experimental results using five different fire videos with seven different resolutions indicate that the execution time of the proposed GPU implementation outperforms that of the CPU implementation in terms of execution time and takes a 25.11ms per frame for the UXGA resolution video, satisfying real-time processing (30 frames per second, 30fps) of the fire detection algorithm.

본 논문에서는 기존에 많이 사용되는 복잡한 4단계 화재 감지 알고리즘의 성능을 향상시키기 위해 그래픽스 처리 장치 (GPU)를 이용한 효율적인 병렬 구현 방법을 제안하였고 성능을 분석하였다. 또한 현재 많이 사용되고 있는 7가지 서로 다른 해상도 (QVGA, VGA, SVGA, XGA, SXGA+, UXGA, QXGA)의 비디오를 입력으로 하여 성능을 분석하였다. 더불어 각 해상도별 GPU 기반 실행시간과 고성능 CPU에서의 실행시간을 비교 분석하였다. 각 해상도의 5가지 화재 및 비 화재 비디오를 이용하여 모의 실험한 결과, GPU는 CPU보다 실행시간에서 우수한 성능을 보이는 동시에 FULL HD급의 높은 해상도인 UXGA 영상에서도 프레임 당 25.11ms의 실행시간이 소요되어 초당 30 프레임의 실시간 처리가 가능함을 보였다.

Keywords

References

  1. National Emergency Management Statistics, National Emergency Management Agency, 2013.
  2. S. M. Kang, J. M. Kim, "Survey for Early Detection Techniques of Smoke and Flame using Camera Images," Journal of the Korea society of computer and information, vol.16, no.4, pp.43-52, 2011. https://doi.org/10.9708/jksci.2011.16.4.043
  3. Z, Zhang, T. Shen, J. Zou, "An Improved Probabilistic Approach for Fire Detection in Videos," Fire Technology, vol. 50, no. 3, pp.745-752, 2014. https://doi.org/10.1007/s10694-012-0253-1
  4. D. C. Wang, X. Cui, E. Park, C. Jin, H. Kim, "Adaptive flame detection using randomness testing and robust features," Fire Safety Journal, vol. 55, pp. 116-125, 2013. https://doi.org/10.1016/j.firesaf.2012.10.011
  5. D, H, Lee, J, W, Yoo, K. H. Lee, Y. Kim, "Real Time Flame and Smoke Detection Algorithm Based on Conditional Test in YCbCr Color Model and Adaptive Differential Image," Journal of the Korea society of computer and information, Vol. 15, no. 5, pp. 57-65, 2010. https://doi.org/10.9708/jksci.2010.15.5.057
  6. I. kolesov, P. Karasev, A. Tannenbaum, and E. Haber, "Fire and Smoke Detection in Video with Optimal Mass Transport Based Optical Flow and Neural Networks," in Proc. 2010 IEEE International Conference Image Processing, Hong Kong, pp. 761-764, 2010.
  7. B. Lee and D. Han, "Real-Time Fire Detection Using Camera Sequence Image in Tunnel Environment," Lecture Notes in Computer Science, vol. 4681, pp. 1209-1220, 2007.
  8. X. Qi and J. Ebert, "A Computer Vision Based Method for Fire Detection in Color Videos," International Journal of imaging and Robotics, vol. 2, no. 9, pp. 22-34, 2009.
  9. T. Celik, H. Demirel, H. Ozkaramanli, and M. Uyguroglu, "Fire Detection Using Statistical Color Model in Video Sequences," Journal of Visual Communication and Image Representation, vol. 18, no. 2, pp. 176-185, 2007. https://doi.org/10.1016/j.jvcir.2006.12.003
  10. T. Qiu, Y. Yan, and G. Lu, "An Autoadaptive Edge-Detection Algorithm for Flame and Fire Image Processing," IEEE Transactions on Instrumentation and Measurement, vol. 61, no. 5, pp. 1486-1493, 2012. https://doi.org/10.1109/TIM.2011.2175833
  11. B. C. Ko, K. H. Cheong, and J. Y. Nam, "Fire Detection Based on Vision Sensor and Support Vector Machines," Fire Safety Journal, Vol. 41, no. 3, pp. 322-329, 2009.
  12. S. M. Kang, J. M. Kim, "Multimedia Extension Instructions and Optimal Many-core Processor Architecture Exploration for Portable Ultrasonic Image Processing," Journal of the Korea society of computer and information, vol.17, no.8, pp.1-10, 2012. https://doi.org/10.9708/jksci.2012.17.8.001
  13. I. K. Park, N. Singhal, M. H. Lee, S. Cho, and C. W. Kim, "Design and Performance Evaluation of Image Processing Algorithm on GPUs," IEEE Transactions on Parallel and Distributed Systems, vol.22, no.1, pp.91-104, 2011. https://doi.org/10.1109/TPDS.2010.115
  14. I. K. Park, N. Singhal, M. H. Lee, S. Cho, and C. W. Kim, "Design and Performance Evaluation of Image Processing Algorithms on GPUs," IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 1, pp. 91-104, 2011. https://doi.org/10.1109/TPDS.2010.115
  15. P. N. Glaskowsky, "NVIDIA's Fermi: the first complete GPU computing architecture." White paper, 2009.

Cited by

  1. A Study on the Transmission Speed Improvement of Sharing Situation Information by Variable Message Protocol vol.26, pp.1, 2015, https://doi.org/10.9708/jksci.2021.26.01.135