DOI QR코드

DOI QR Code

Comparison of Hounsfield Units by Changing in Size of Physical Area and Setting Size o f Region o f Interest b y Using the CT Phantom Made with a 3D Printer

3D 프린터로 제작된 CT 팬톰을 이용한 물리적 관심영역과 설정 관심영역의 크기에 따른 하운스필드의 비교

  • 성열훈 (청주대학교 보건의료대학 방사선학과)
  • Received : 2015.10.30
  • Accepted : 2015.12.16
  • Published : 2015.12.31

Abstract

In this study, we have observed the change of the Hounsfield (HU) in the alteration of by changing in size of physical area and setting size of region of interest (ROI) at focus on kVp and mAs. Four-channel multi-detector computed tomography was used to get transverse axial scanning images and HU. Three dimensional printer which is type of fused deposition modeling (FDM) was used to produce the Phantom. The structure of the phantom was designed to be a type of cylinder that contains 33 mm, 24 mm, 19 mm, 16 mm, 9 mm size of circle holes that are symmetrically located. It was charged with mixing iodine contrast agent and distilled water in the holes. The images were gained with changing by 90 kVp, 120 kVp, 140 kVp and 50 mAs, 100 mAs, 150 mAs, respectively. The 'image J' was used to get the HU measurement of gained images of ROI. As a result, it was confirmed that kVp affects to HU more than mAs. And it is suggested that the smaller size of physical area, the more decreasing HU even in material of a uniform density and the smaller setting size of ROI, the more increasing HU. Therefore, it is reason that to set maximum ROI within 5 HU is the best way to minimize in the alteration of by changing in size of physical area and setting size of region of interest.

본 연구에서는 3차원(dimension, D) 프린터로 자체 제작한 팬톰을 이용하여 관전압과 관전류량 변화 중심으로 균일한 조직의 물리적 영역 크기 변화에 의한 관심영역(region of interest, ROI)와 설정치 영역 크기 변화에 의한 ROI 내에서의 하운스필드(hounsfield units, HU)의 변화를 알아보고자 하였다. 본 실험에서는 단면영상과 HU를 획득하기 위해 4-다중 검출기 전산화단층영상장비를 이용하였다. 팬톰 제작은 용융적층조형술(fused deposition modeling, FDM) 프린팅 방식의 3D 프린터 기기를 사용하였다. 팬톰의 구조는 $160{\times}160{\times}50mm$의 원통형으로 33 mm, 24 mm, 19 mm, 16 mm, 9 mm 크기의 원형 구멍을 대칭되도록 두 쌍으로 설계하였다. 구멍에는 증류수를 혼합한 조영제를 충전하였다. X선의 관전압과 관전류량는 각각 90 kVp, 120 kVp, 140 kVp 그리고 50 mAs, 100 mAs, 150 mAs로 변화시켜 단면영상을 획득하였다. 획득된 영상의 ROI 내 HU 측정은 image J 프로그램를 이용하였다. 그 결과, 관전류량보다는 관전압이 HU에 영향을 주고 있음을 확인하였다. 그리고 균일한 밀도를 갖는 물질이라도 물리적 영역 크기가 작아질수록 HU는 감소하였으며 ROI 설정 영역 크기가 작아질수록 HU는 증가하여 HU가 변화한다는 것을 확인할 수 있었다. 따라서 5 HU 이내의 노이즈 수준에서 ROI를 최대한 크게 설정하는 것이 물리적 영역 크기와 ROI 설정 영역 크기에 의한 변이를 최소화시킬 수 있는 방법이라고 판단된다.

Keywords

References

  1. Hounsfield G : Computerized transverse axial scanning( tomography) Part I. Description of system. Br J Radiol, 46, 1016-1022, 1973 https://doi.org/10.1259/0007-1285-46-552-1016
  2. Hounsfield G : A method of and apparatus for examination of a body by radiation such as X-ray and gamma radiation. British patent no. 1283915, London, 1972
  3. AAPM Report 1, Phantoms for performance evaluation and quality assurance of CT scanners, American Association of Physicists in Medicine, Chicago, IL, USA, 1997
  4. Perandini S, Faccioli N, Zaccarella A, Re TJ, Pozzi Mucelli R : The diagnostic contribution of CT volumetric rendering techniques in routine practice. Indian J Radiol Imaging, 20(2), 92-97, 2010 https://doi.org/10.4103/0971-3026.63043
  5. Groell R, Rienmueller R, Schaffler GJ, Portugaller HR, Graif E, Willfurth P : CT number variations due to different image acquisition and reconstructionparameters: a thorax phantom study. COMP MED IM, 24(2), 53-58, 2000 https://doi.org/10.1016/S0895-6111(99)00043-9
  6. Taguchi A, Tanimoto K, Ogawa M, Sunayashiki T, Wada T : Effect of size of region of interest on precision of bone mineral measurements of the mandible by quantitative computed tomography. Dentomaxillofac Radiol, 20, 25-29, 1991 https://doi.org/10.1259/dmfr.20.1.1884848
  7. Jeong-Nam Tak : Study on measurement of the mandible BMD according to the ROI variation. Journal of Radiological Science and Technology, 32(3), 271-276, 2009
  8. Thomas SJ : Relative electron density calibration of CT scanners for radiotherapy treatment planning, Br J Radiol, 72(860), 781-786, 1999 https://doi.org/10.1259/bjr.72.860.10624344
  9. Youl-Hun Seoung : Development of Self-Diagnosis Linearity Quality Assurance Technique in Computed Tomography by Using Iodic Contrast Agent, J Korean Conten Soc, 15(5), 436-443, 2015
  10. Youl-Hun Seoung : A Study on Evaluation of Performance in Educational Multi-Detector Computed Tomography. J. Ind. Sci., Cheongju Univ., 29(2), 401-408, 2012
  11. Wang-Kyun Oh : Evaluation of Usefulness and Availability for Orthopedic Surgery using Clavicle Fracture Model Manufactured by Desktop 3D Printer, Journal of Radiological Science and Technology. 37(3), 203-209, 2013
  12. Youl-Hun Seoung : 3-Dimension Printing for Mesh Types of Short Arm Cast by Using Computed Tomography, J Korean Conten Soc, 15(1), 308-315, 2015
  13. Kyong-Tae Bae : Intravenous Contrast Medium Administration and Scan Timing in CT: Considerations and Approaches State-of-the-Art. Radiology, 256, 32-61, 2010 https://doi.org/10.1148/radiol.10090908
  14. Smith BM, Barr RG : Establishing normal reference values in quantitative computed tomography of emphysema. J Thorac Imaging, 28(5),280-283, 2013 https://doi.org/10.1097/RTI.0b013e3182a0d805
  15. Ji-Youn Lee, Kee-Deog Kim, Chang-Seo Park : Effect of the slice thickness and the size of region of interest on CT number. Imaging Science in Dentistry, 31(2), 85-91, 2001
  16. Gha-Jung Kim : Evaluation of corrected dose with inhomogeneous tissue by using CT image. Korean society for radiation therapy, 18(2), 75-80, 2006
  17. AAPM Report 1, Phantoms for performance evaluation and quality assurance of CT scanners, American Association of Physicists in Medicine, Chicago, IL, USA, 1997
  18. Seung-Wan. Lee, Hee-Joung Kim, Tae-Ho Kim, So-Jeong Jo, Chang-Lae Lee : Estimation and Application of HU Values for Various Materials as a Function of Physical Factor. Korean J Med Phys, 20(3), 145-151, 2009
  19. Hairil RAR, Said MSSR, Wan MMS : Effects of different tube potentials and iodine concentrations on image enhancement, contrast-to-noise ratio and noise in micro-CT images: a phantom study. Quant Imaging Med Surg. 3(5): 256-261, 2013 https://doi.org/10.3978/j.issn.2223-4292.2013.10.04