DOI QR코드

DOI QR Code

Axial behaviour of rectangular concrete-filled cold-formed steel tubular columns with different loading methods

  • Qu, Xiushu (School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture) ;
  • Chen, Zhihua (School of Civil Engineering, Tianjin University) ;
  • Sun, Guojun (School of Civil Engineering, Tianjin University)
  • Received : 2012.12.14
  • Accepted : 2014.05.21
  • Published : 2015.01.25

Abstract

Axial compression tests have been carried out on 18 rectangular concrete-filled cold-formed steel tubular (CFST) columns with the aim of investigating the axial behaviour of rectangular CFST columns under different loading methods (steel loaded-first and full-section loaded methods). The influence of different loading methods on the ultimate strength of the specimens was compared and the development of Poisson's Ratio as it responds to an increasing load was reported and analysed. Then, the relationship between the constraining factor and the strength index, and the relationship between the constraining factor and ductility index of the specimens, were both discussed. Furthermore, the test results of the full-section loaded specimens were compared with five international code predicted values, and an equation was derived to predict the axial carrying capacity for rectangular CFST columns with a steel loaded-first loading method.

Keywords

Acknowledgement

Grant : Research on Cooperativity and Composite Mechanical Performance for High-Performance Rectangular Concrete-filled Steel Tubular Columns

Supported by : National Natural Scientific Fund

References

  1. ACI 318M-05 (2005), Building code requirements for structural concrete and commentary, ACI Committee 318.
  2. AISC 360-05 (2005), Specification for structural steel buildings, AISC, Chicago, IL, USA.
  3. BS EN 1994-1-1:2004 (2009), Eurocode 4: Design of composite steel and concrete structures-part1-1: General rules for buildings, London, UK.
  4. Chen, B.C. and Huang, F.Y. (2009), "Experimental research on influence of loading methods to behavior of concrete filled steel tubular stub columns under axial loads", J. China Railway Soc., 31(3), 82-88. [In Chinese]
  5. Dai, X.H. and Lam, D. (2012), "Shape effecton thebehaviourofaxially loaded concrete filled steel tubular stub columns at elevated temperature", J. Construct. Steel Res., 73, 117-127. https://doi.org/10.1016/j.jcsr.2012.02.002
  6. EI-Heweity, M.M. (2012), "On the performance of circular concrete-filled high strength steel columns under axial loading", Alexandria Eng. J., 51(2), 109-119. https://doi.org/10.1016/j.aej.2012.05.006
  7. Ellobody, E. (2007), "Nonlinear behaviour of concrete-filled stainless steel stiffened slender tube columns", Thin-Wall. Struct., 45(3), 259-273. https://doi.org/10.1016/j.tws.2007.02.011
  8. GB 50152-92 (1992), Standard methods for testing of concrete structures, Chinese Standard, Beijing, China. [In Chinese]
  9. GB/T 228-2002 (2002), Metallic materials-Tensile testing at ambient temperature, Chinese Standard, Beijing, China. [In Chinese]
  10. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Construct. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001
  11. GJB 4142-2000 (2001), Technical specifications for early-strength model composite structure used for navy port emergency repair in wartime, Chinese Standard, Beijing, China. [In Chinese]
  12. Gupta, P.K., Sarda, S.M. and Kumar, M.S. (2007), "Experimental and computational study of concrete filled steel tubular columns under axial loads", J. Construct. Steel Res., 63(2), 182-193. https://doi.org/10.1016/j.jcsr.2006.04.004
  13. Han, L.H. (2002), "Tests on stub columns of concrete-filled RHS sections", J. Construct. Steel Res., 58(3), 353-372. https://doi.org/10.1016/S0143-974X(01)00059-1
  14. Han, L.H. and Yao, G.H. (2003), "Behaviour of concrete-filled hollow structural steel (HSS) columns pre-load on the steel tubes", J. Construct. Steel Res., 59(12), 1455-1475. https://doi.org/10.1016/S0143-974X(03)00102-0
  15. Han, L.H., Zhao, X.L. and Tao, Z. (2001), "Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns", Steel Compos. Struct., Int. J., 1(1), 51-74. https://doi.org/10.12989/scs.2001.1.1.051
  16. Lam, D., Dai, X.H. and Han, L.H. (2012), "Behaviour of inclined, tapered and STS square CFST stub columns subjected to axial load", Thin-Wall. Struct., 54, 94-105. https://doi.org/10.1016/j.tws.2012.02.010
  17. Liang, Q.Q. (2011), "High strength circular concrete-filled steel tubular slender beam-columns, Part II: Fundamental behavior", J. Construct. Steel Res., 67(2), 172-180. https://doi.org/10.1016/j.jcsr.2010.08.007
  18. Load and Resistance Factor Design (1999), Specification for Structural Steel Buildings: American Institute of Steel Construction, Chicago, IL, USA.
  19. Lue, D.M., Liu, J.L. and Yen, T. (2007), "Experimental study on rectangular CFT columns with high-strength concrete", J. Construct. Steel Res., 63(1), 37-44. https://doi.org/10.1016/j.jcsr.2006.03.007
  20. Moon, J., Roeder, C.W., Lehman, D.E. and Lee, H. (2012), "Analytical modeling of bending of circular concrete-filled steel tubes", Eng. Struct., 42, 349-361. https://doi.org/10.1016/j.engstruct.2012.04.028
  21. Muhammad, N.B., Fan, J.S. and Nie, J.G. (2006), "Strength of concrete filled steel tubular columns", Tsinghua Sci. Tech., 11(6), 657-666. https://doi.org/10.1016/S1007-0214(06)70248-6
  22. Patel, V.I., Liang, Q.Q. and Hadi, M.N.S. (2012), "High strength thin-walled rectangular concrete-filled steel tubular slender beam-columns, Part I: Modeling", J. Construct. Steel Res., 70, 377-384. https://doi.org/10.1016/j.jcsr.2011.10.019
  23. Schneider, S. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  24. Song, T.Y., Han, L.H. and Yu, H.X. (2010), "Concrete filled steel tube stub columns under combined temperature and loading", J. Construct. Steel Res., 66(3), 369-384. https://doi.org/10.1016/j.jcsr.2009.10.010
  25. Tao, Z., Uy, B., Han, L.H. and Wang, Z.B. (2009), "Analysis and design of concrete-filled stiffened thin-walled steel tubular columns under axial compression", Thin-Wall. Struct., 47(12), 1544-1556. https://doi.org/10.1016/j.tws.2009.05.006
  26. Tokgoz, S. and Dundar, C. (2010), "Experimental study on steel tubular columns in-filled with plain and steel fiber reinforced concrete", Thin-Wall. Struct., 48(6), 414-422. https://doi.org/10.1016/j.tws.2010.01.009
  27. Xiong, D.X. and Zha, X.X. (2007), "A numerical investigation on the behaviour of concrete-filled steel tubular columns under initial stresses", J. Construct. Steel Res., 63(5), 599-611. https://doi.org/10.1016/j.jcsr.2006.07.002
  28. Yang, Y.F. and Han, L.H. (2009), "Experiments on rectangular concrete-filled steel tubes loaded axially on a partially stressed cross-sectional area", J. Construct. Steel Res., 65(8-9), 1617-1630. https://doi.org/10.1016/j.jcsr.2009.04.004
  29. Yang, H., Lam, D. and Gardner, L. (2008), "Testing and analysis of concrete-filled elliptical hollow sections", Eng. Struct., 30(12), 3771-3781. https://doi.org/10.1016/j.engstruct.2008.07.004
  30. Yuan, W.B. and Yang, J.J. (2013), "Experimental and numerical studies of short concrete-filled double skin composite tube columns under axially compressive loads", J. Construct. Steel Res., 80, 23-31. https://doi.org/10.1016/j.jcsr.2012.09.014

Cited by

  1. Pseudo-static tests of terminal stirrup-confined concrete-filled rectangular steel tubular columns vol.144, 2018, https://doi.org/10.1016/j.jcsr.2018.01.017
  2. FE modelling of the flexural behaviour of square and rectangular steel tubes filled with normal and high strength concrete vol.119, 2017, https://doi.org/10.1016/j.tws.2017.06.025
  3. Behavior of rectangular concrete-filled high-strength steel tubular columns with different aspect ratio vol.109, 2016, https://doi.org/10.1016/j.tws.2016.10.005
  4. Finite element analysis on the structural behaviour of square CFST beams vol.210, 2017, https://doi.org/10.1088/1757-899X/210/1/012018
  5. Compressive behaviour and design of L-shaped columns fabricated using concrete-filled steel tubes vol.152, 2017, https://doi.org/10.1016/j.engstruct.2017.09.046
  6. Anchored blind bolted composite connection to a concrete filled steel tubular column vol.23, pp.1, 2015, https://doi.org/10.12989/scs.2017.23.1.115
  7. Behavior of fibre reinforced cementitious material-filled steel tubular columns vol.23, pp.4, 2017, https://doi.org/10.12989/scs.2017.23.4.465
  8. Composite action of hollow concrete-filled circular steel tubular stub columns vol.26, pp.6, 2015, https://doi.org/10.12989/scs.2018.26.6.693
  9. Seismic behavior of SFRC shear wall with CFST columns vol.28, pp.5, 2015, https://doi.org/10.12989/scs.2018.28.5.527
  10. Effect of spiral spacing on axial compressive behavior of square reinforced concrete filled steel tube (RCFST) columns vol.31, pp.6, 2019, https://doi.org/10.12989/scs.2019.31.6.559
  11. Numerical Analysis and Axial Bearing Capacity of Composite Columns with Recycled Aggregate Concrete-Filled Steel Tube and Profile Steel vol.45, pp.5, 2015, https://doi.org/10.1007/s13369-019-04169-y
  12. Experimental study on seismic behavior of full scale square concrete filled steel tubular stocky columns vol.272, pp.None, 2015, https://doi.org/10.1051/e3sconf/202127202024
  13. Numerical Investigation of the Composite Action of Axially Compressed Concrete-Filled Circular Aluminum Alloy Tubular Stub Columns vol.14, pp.9, 2021, https://doi.org/10.3390/ma14092435
  14. Numerical Investigation of Composite Behavior and Strength of Rectangular Concrete-Filled Cold-Formed Steel Tubular Stub Columns vol.14, pp.20, 2015, https://doi.org/10.3390/ma14206221
  15. Numerical analysis on concrete-filled wide rectangular steel tubular (CFWRST) stub columns under axial compression vol.34, pp.None, 2015, https://doi.org/10.1016/j.istruc.2021.10.074
  16. Simplified 2D Finite Element Model for Calculation of the Bearing Capacity of Eccentrically Compressed Concrete-Filled Steel Tubular Columns vol.11, pp.24, 2021, https://doi.org/10.3390/app112411645
  17. Behaviors of FRP confined rectangular concrete-filled thin-walled steel tubular stub columns using high-strength materials under axial load vol.280, pp.None, 2015, https://doi.org/10.1016/j.compstruct.2021.114915