Abstract
In recent times, the median filtering (MF) detector as a forensic tool for the recovery of forgery images' processing history has concerned broad interest. For the classification of MF image, MF detector should be designed with smaller feature set and higher detection ratio. This paper presents a novel method for the detection of MF in altered images. It is transformed from BMP to several kinds of MF image by the median window size. The difference distribution values are computed according to the window sizes and then the values construct the feature set same as the MF window size. For the MF detector, the feature set transformed to the model specification which is computed using latent growth modeling (LGM). Through experiments, the test image is classified by the discriminant into two classes: the true positive (TP) and the false negative (FN). It confirms that the proposed algorithm is to be outstanding performance when the minimum distance average is 0.119 in the confusion of TP and FN for the effectivity of classification.
최근에 위,변조 영상의 처리이력 복구를 위한 포렌식 툴로서 미디언 필터링 (MF: Median Filtering) 검출기가 크게 고려되고 있다. 미디언 필터링의 분류를 위한 미디언 검출기는 적은 양의 특징 셋과 높은 검출율을 갖도록 설계되어야 한다. 본 논문은 변조된 영상의 미디언 필터링 검출을 위한 새로운 방법을 제안한다. BMP를 미디언 윈도우 사이즈에 의하여 여러 미디언 필터링 영상으로 변환하고, 윈도우 사이즈에 따른 차분포 값을 계산하여 그 값으로 미디언 필터링 윈도우 사이즈와 같은 특징 셋을 만든다. 미디언 필터링 검출기에서, 특징 셋은 잠재성장 모델링 (LFM: Latent Growth Modeling)을 사용하는 모델 특성으로 변환된다. 실험에서, 테스트 영상은 TP (True Positive)와 FN (False Negative) 두 분류로 판별된다. 제안된 알고리즘은 분류 효율성이 TP와 FN의 혼동에서 최소거리 평균이 0.119로서 훌륭한 성능임이 확인 되었다.