참고문헌
- Chen, D.W. and Wu, J.S. (2002), "The exact solutions for the natural frequencies and mode shapes of nonuniform beams with multiple spring-mass system", J. Sound Vib., 255, 299-322. https://doi.org/10.1006/jsvi.2001.4156
- Chen, D.W. (2003), "The exact solutions for the natural frequencies and mode shapes of non-uniform beams carrying multiple various concentrated elements", Struct. Eng. Mech., 16, 153-176. https://doi.org/10.12989/sem.2003.16.2.153
- C atal, S. (2006), "Analysis of free vibration of beam on elastic soil using differential transform method", Struct. Eng. Mech., 24(1), 51-62. https://doi.org/10.12989/sem.2006.24.1.051
- Catal, S. and Catal, H.H. (2006), "Buckling analysis of partially embedded pile in elastic soil using differential transform method", Struct. Eng. Mech., 24(2), 247-268. https://doi.org/10.12989/sem.2006.24.2.247
- Catal, S. (2008), "Solution of free vibration equations of beam on elastic soil by using differential transform method", Appl. Math. Model., 32, 1744-1757. https://doi.org/10.1016/j.apm.2007.06.010
- C atal, S. (2012), "Response of forced Euler-Bernoulli beams using differential transform method", Struct. Eng. Mech., 42, 95-119. https://doi.org/10.12989/sem.2012.42.1.095
- Gurgoze, M. (1984), "A note on the vibrations of restrained beams and rods with point masses", J. Sound Vib., 96, 461-468. https://doi.org/10.1016/0022-460X(84)90633-3
- Gurgoze, M. (1985), "On the vibration of restrained beams and rods with heavy masses", J. Sound Vib., 100, 588-589. https://doi.org/10.1016/S0022-460X(85)80009-2
- Gurgoze, M. and Batan, H. (1996), "On the effect of an attached spring-mass system on the frequency spectrum of a cantilever beam", J. Sound Vib., 195, 163-168. https://doi.org/10.1006/jsvi.1996.0413
- Gurgoze, M. (1996), "On the eigenfrequencies of a cantilever beam with attached tip mass and a springmass system", J. Sound Vib., 190, 149-162. https://doi.org/10.1006/jsvi.1996.0053
- Gurgoze, M. (1998), "On the alternative formulation of the frequency equation of a Bernoulli-Euler beam to which several spring-mass systems are attached in-span", J. Sound Vib., 217, 585-595. https://doi.org/10.1006/jsvi.1998.1796
- Gurgoze, M. and Erol, H. (2001), "Determination of the frequency response function of a cantilever beam simply supported in-span", J. Sound Vib., 247, 372-378. https://doi.org/10.1006/jsvi.2000.3618
- Gurgoze, M. and Erol, H. (2002), "On the frequency response function of a damped cantilever beam simply supported in-span and carrying a tip mass", J. Sound Vib., 255, 489-500. https://doi.org/10.1006/jsvi.2001.4118
- Hamdan, M.N. and Jubran, B.A. (1991), "Free and forced vibrations of a restrained uniform beam carrying an intermediate lumped mass and a rotary inertia", J. Sound Vib., 150, 203-216. https://doi.org/10.1016/0022-460X(91)90616-R
- Jaworski, J.W. and Dowell, E.H. (2008), "Free vibration of a cantilevered beam with multiple steps: Comparison of several theoretical methods with experiment", J. Sound Vib., 312, 713-725. https://doi.org/10.1016/j.jsv.2007.11.010
- Ju, F., Lee, H. P. and Lee, K. H. (1994), "On the free vibration of stepped beams", Int. J. Solid. Struct., 31, 3125-3137. https://doi.org/10.1016/0020-7683(94)90045-0
- Kaya, M.O. and Ozgumus, O.O. (2007), "Flexural-torsional-coupled vibration analysis of axially loaded closed-section composite Timoshenko beam by using DTM", J. Sound Vib., 306, 495-506. https://doi.org/10.1016/j.jsv.2007.05.049
- Koplow, M.A., Bhattacharyya, A. and Mann, B.P. (2006), "Closed form solutions for the dynamic response of Euler-Bernoulli beams with step changes in cross-section", J. Sound Vib., 295, 214-225. https://doi.org/10.1016/j.jsv.2006.01.008
- Lin, H.P. and Chang, S.C. (2005), "Free vibration analysis of multi-span beams with intermediate flexible constraints", J. Sound Vib., 281, 155-169. https://doi.org/10.1016/j.jsv.2004.01.010
- Lin, H.Y. and Tsai, Y.C. (2005), "On the natural frequencies and mode shapes of a uniform multi-span beam carrying multiple point masses", Struct. Eng. Mech., 21, 351-367. https://doi.org/10.12989/sem.2005.21.3.351
- Lin, H.Y. and Tsai, Y.C. (2006), "On the natural frequencies and mode shapes of a multiple-step beam carrying a number of intermediate lumped masses and rotary inertias", Struct. Eng. Mech., 22, 701-717. https://doi.org/10.12989/sem.2006.22.6.701
- Lin, H.Y. and Tsai, Y.C. (2007), "Free vibration analysis of a uniform multi-span beam carrying multiple spring-mass systems", J. Sound Vib., 302, 442-456. https://doi.org/10.1016/j.jsv.2006.06.080
- Lin, H.Y. (2008), "Dynamic analysis of a multi-span uniform beam carrying a number of various concentrated elements", J. Sound Vib., 309, 262-275. https://doi.org/10.1016/j.jsv.2007.07.015
- Lin, H.Y. (2010), "An exact solution for free vibrations of a non-uniform beam carrying multiple elasticsupported rigid bars", Struct. Eng. Mech., 34, 399-416. https://doi.org/10.12989/sem.2010.34.4.399
- Liu, W.H., Wu, J.R. and Huang, C.C. (1998), "Free vibration of beams with elastically restrained edges and intermediate concentrated masses", J. Sound Vib., 122, 193-207.
- Naguleswaran, S. (2002a), "Natural frequencies, sensitivity and mode shape details of an Euler-Bernoulli beam with one-step change in cross-section and with ends on classical supports", J. Sound Vib., 252, 751-767. https://doi.org/10.1006/jsvi.2001.3743
- Naguleswaran, S. (2002b), "Vibration of an Euler-Bernoulli beam on elastic end supports and with up to three-step changes in cross-section", Int. J. Mech. Sci., 44, 2541-2555. https://doi.org/10.1016/S0020-7403(02)00190-X
- Naguleswaran, S. (2002c), "Transverse vibrations of an Euler-Bernoulli uniform beam carrying several particles", Int. J. Mech. Sci., 44, 2463-2478. https://doi.org/10.1016/S0020-7403(02)00182-0
- Naguleswaran, S. (2003a), "Transverse vibration of an Euler-Bernoulli uniform beam on up o five resilient supports including ends", J. Sound Vib., 261, 372-384. https://doi.org/10.1016/S0022-460X(02)01238-5
- Naguleswaran, S. (2003b), "Vibration and stability of an Euler-Bernoulli beam with up to three-step changes in cross-section and in axial force", Int. J. Mech. Sci., 45, 1563-1579. https://doi.org/10.1016/j.ijmecsci.2003.09.001
- Naguleswaran, S. (2004a), "Transverse vibration and stability of an Euler-Bernoulli beam with step change in cross-section and in axial force", J. Sound Vib., 270, 1045-1055. https://doi.org/10.1016/S0022-460X(03)00505-4
- Naguleswaran, S. (2004b), "Vibration of an Euler-Bernoulli stepped beam carrying a non-symmetrical rigid body at the step", J. Sound Vib., 271, 1121-1132. https://doi.org/10.1016/S0022-460X(03)00574-1
- Ozgumus, O.O. and Kaya, M.O. (2007), "Energy expressions and free vibration analysis of a rotating double tapered Timoshenko beam featuring bending-torsion coupling", Int. J. Eng. Sci., 45, 562-586. https://doi.org/10.1016/j.ijengsci.2007.04.005
- Ozgumus, O.O. and Kaya, M.O. (2006), "Flapwise bending vibration analysis of double tapered rotating Euler-Bernoulli beam by using the differential transform method", Meccanica, 41, 661-670. https://doi.org/10.1007/s11012-006-9012-z
- Ozdemir, O. and Kaya, M.O. (2006), "Flapwise bending vibration analysis of a rotating tapered cantilever Bernoulli-Euler beam by differential transform method", J. Sound Vib., 289, 413-420. https://doi.org/10.1016/j.jsv.2005.01.055
- Wang, J.R., Liu, T.L. and Chen, D.W. (2007), "Free vibration analysis of a Timoshenko beam carrying multiple spring-mass systems with the effects of shear deformation and rotatory inertia", Struct. Eng. Mech., 26, 1-14. https://doi.org/10.12989/sem.2007.26.1.001
- Wu, J.S. and Chou, H.M. (1999), "A new approach for determining the natural frequencies and mode shape of a uniform beam carrying any number of spring masses", J. Sound Vib., 220, 451-468. https://doi.org/10.1006/jsvi.1998.1958
- Wu, J.S. and Chen, D.W. (2001), "Free vibration analysis of a Timoshenko beam carrying multiple springmass systems by using the numerical assembly technique", Int. J. Numer. Meth. Eng., 50, 1039-1058. https://doi.org/10.1002/1097-0207(20010220)50:5<1039::AID-NME60>3.0.CO;2-D
- Wu, J.S. and Chang, B.H. (2013), "Free vibration of axial-loaded multi-step Timoshenko beam carrying arbitrary concentrated elements using continuous-mass transfer matrix method", Euro. J. Mech. A/Solid., 38, 20-37. https://doi.org/10.1016/j.euromechsol.2012.08.003
- Yesilce, Y., Demirdag, O. and Catal, S. (2008), "Free vibrations of a multi-span Timoshenko beam carrying multiple spring-mass systems", Sadhana, 33, 385-401. https://doi.org/10.1007/s12046-008-0026-1
- Yesilce, Y. and Demirdag, O. (2008), "Effect of axial force on free vibration of Timoshenko multi-span beam carrying multiple spring-mass systems", Int. J. Mech. Sci., 50, 995-1003. https://doi.org/10.1016/j.ijmecsci.2008.03.001
- Yesilce, Y. and Catal, S. (2009), "Free vibration of axially loaded Reddy-Bickford beam on elastic soil using the differential transform method", Struct. Eng. Mech., 31(4), 453-476. https://doi.org/10.12989/sem.2009.31.4.453
- Yesilce, Y. (2010), "Effect of axial force on the free vibration of Reddy-Bickford multi-span beam carrying multiple spring-mass systems", J. Vib. Control, 16, 11-32. https://doi.org/10.1177/1077546309102673
- Zhou, J.K. (1986), Differential transformation and its applications for electrical circuits, Huazhong University Press, Wuhan China.
피인용 문헌
- A new analytical approach for determination of flexural, axial and torsional natural frequencies of beams vol.55, pp.3, 2015, https://doi.org/10.12989/sem.2015.55.3.655
- Effects of rotary inertia shear deformation and non-homogeneity on frequencies of beam vol.55, pp.4, 2015, https://doi.org/10.12989/sem.2015.55.4.871
- Dynamic analysis of deployable structures using independent displacement modes based on Moore-Penrose generalized inverse matrix vol.54, pp.6, 2015, https://doi.org/10.12989/sem.2015.54.6.1153
- Closed-form solutions for non-uniform axially loaded Rayleigh cantilever beams vol.60, pp.3, 2016, https://doi.org/10.12989/sem.2016.60.3.455
- Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam vol.58, pp.5, 2016, https://doi.org/10.12989/sem.2016.58.5.847
- A Normalized Transfer Matrix Method for the Free Vibration of Stepped Beams: Comparison with Experimental and FE(3D) Methods vol.2017, 2017, https://doi.org/10.1155/2017/8186976
- Differential transform method and Adomian decomposition method for free vibration analysis of fluid conveying Timoshenko pipeline vol.62, pp.1, 2015, https://doi.org/10.12989/sem.2017.62.1.065
- YAPAY SİNİR AĞLARI YAKLAŞIMI İLE BOYLAMASINA TİTREŞİMİN TRANSENDENTAL DENKLEMİN ÇÖZÜMÜ vol.24, pp.1, 2015, https://doi.org/10.17482/uumfd.504170