DOI QR코드

DOI QR Code

Thermo-mechanical analysis of road structures used in the on-line electric vehicle system

  • Yang, B.J. (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Na, S. (Korea Institute of Civil Engineering and Building Technology) ;
  • Jang, J.G. (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, H.K. (School of Architecture, Chosun University) ;
  • Lee, H.K. (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2014.03.19
  • Accepted : 2014.11.11
  • Published : 2015.02.10

Abstract

On-line electric vehicle (OLEV) is a new eco-friendly transportation system that collects electricity from a power cable buried beneath the road surface, allowing the system to resolve various problems associated with batteries in electric vehicles. This paper presents a finite element (FE) based thermo-mechanical analysis of precast concrete structures that are utilized in the OLEV system. An experimental study is also conducted to identify materials used for a joint filler, and the observed experimental results are applied to the FE analysis. Traffic loading and boundary conditions are modeled in accordance with the related standards and environmental characteristics of a road system. A series of structural analyses concerning various test scenarios are conducted to investigate the sensitivity of design parameters and to evaluate the structural performance of the road system.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. ABAQUS (2010), 6.10 Documentation, Dassault Systems Simulia Corporation, USA.
  2. Ahn, S., Chun, Y., Cho, D. and Kim, J. (2011), "Wireless power transfer technology in on-line electric vehicle", J. Koean Inst. Electromag. Eng. Sci., 11(3), 174-182. https://doi.org/10.5515/JKIEES.2011.11.3.174
  3. Ahn, S., Pak, J., Song., T., Lee, H., Byun, J.G., Kang, D., Choi, C.S., Kim, E., Ryu, J., Kim, M., Cha, Y., Chun, Y., Rim, C.T., Yim, J.H., Cho, D.H. and Kim, J. (2010), "Low frequency electromagnetic field reduction techniques for the on-line electric vehicle (OLEV)", IEEE International Symposium on Electromagnetic Compatibility, Florida, USA, July.
  4. Bazant, Z.P. and Oh, B.H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16(3), 155-177.
  5. Bechtoula, H., Kono, S. and Watanabe, F. (2009), "Seismic performance of high strength reinforced concrete columns", Struct. Eng. Mech., 31(6), 697-716. https://doi.org/10.12989/sem.2009.31.6.697
  6. Boumiz, A., Vernet, F.C. and Tenoudji, F.C. (1995), "Mechanical properties of cement pastes and mortars at early ages: Evolution with time and degree of hydration", Cem. Mater., 3(3-4), 94-106.
  7. Chen, E.L., Li, K. and Wang, Y. (2013), "Influence of material characteristics of asphalt pavement to thermal stress", Appl. Mech. Mater., 256-259, 1769-1775.
  8. Cho, D. (2012), Developing the eco-friendly public transportation system based on the wireless power transfer technology, Land Transport and Maritime, Korea. (in Korean)
  9. Ellobody, E. and Bailey, C.G. (2011), "Structural performance of a post-tensioned concrete floor during horizontally travelling fires", Eng. Struct., 33(6), 1908-1917. https://doi.org/10.1016/j.engstruct.2011.02.024
  10. Fernlund, G., Osooly, A., Poursartip, A., Vaziri, R., Courdji, R., Nelson, K., George, P., Hendrickson, L., Griffith, J. (2003), "Finite element based prediction of process-induced deformation of autoclaved composite structures using 2D process analysis and 3D structural analysis", Compos. Struct., 62(2), 223-234. https://doi.org/10.1016/S0263-8223(03)00117-X
  11. George, S.J. and Tian, Y. (2012), "Structural performance of reinforced concrete flat plate buildings subjected to fire", Int. J. Concrete. Struct. Mater., 6(2), 111-121. https://doi.org/10.1007/s40069-012-0011-2
  12. Hu, M., Li, L., Wang, Y. and Su, H. (2013), "The application of numerical simulation technology in road engineering", Appl. Mech. Mater., 336-338, 690-694. https://doi.org/10.4028/www.scientific.net/AMM.336-338.690
  13. Huang, Z.M. (2007), "Failure analysis of laminated structures by FEM based on nonlinear constitutive relationship", Compos. Struct., 77(3), 270-279. https://doi.org/10.1016/j.compstruct.2005.07.007
  14. Islam, S.M.S. and Khennane, A. (2013), "Computer aided design of RC structures", Int. J. Concrete. Struct. Mater., 7(2), 127-133. https://doi.org/10.1007/s40069-012-0027-7
  15. Jayalekshmi, B.R., Poojary, V.G.D., Venkataramana, K. and Shivashankar, R. (2013), "Seismic response analysis of reinforced concrete frames including soil flexibility", Struct. Eng. Mech., 48(1), 1-16. https://doi.org/10.12989/sem.2013.48.1.001
  16. Kim, W.J., Lee, J.M., Kim, J.S. and Lee, C.J. (2012), "Measuring high speed crack propagation in concrete fracture test using mechanoluminescent material", Smart. Struct. Syst., 10(6), 547-555. https://doi.org/10.12989/sss.2012.10.6.547
  17. Lee, H.K., Avila, G. and Montanez, C. (2007), "Numerical study on retrofit and strengthening performance of sprayed fiber reinforced polymer", Eng. Struct., 27(10), 1476-1487. https://doi.org/10.1016/j.engstruct.2005.04.013
  18. Lee, I. (2012), Structural analysis of power supply rail for on-line electric car, Korea Advanced Instituted of Science and Technology (KAIST), Technical Report. (in Korean)
  19. Lee, J.M. (2009), "Understanding of DB-load", Professional Eng. 42, 1-5. (in Korean)
  20. Liang, Z., Lee, H.K. and Suaris, W. (2006), "Micromechanics-based constitutive modeling for unidirectional laminated composites", Int. J. Solids Struct., 43(18-19), 5674-5689. https://doi.org/10.1016/j.ijsolstr.2005.08.020
  21. Mo, L.T., Huurman, M., Wu, S.P. and Molenaara, A.A.A. (2007), "Investigation into stress states in porous asphalt concrete on the basis of FE-modelling", Finite. Elem. Anal. Des., 43(4), 333-343. https://doi.org/10.1016/j.finel.2006.11.004
  22. Mo, L.T., Huurman, M., Wu, S.P. and Molenaara, A.A.A. (2013), "Mortar fatigue model for mesomechanistic mixture design of ravelling resistant porous asphalt concrete", Mater. Struct., DOI:10.1617/s11527-013-0105-6.
  23. Ronagh, H.R. and Behnam, B. (2012), "Investigating the effect of prior damage on the post-earthquake fire resistance of reinforced concrete portal frames", Int. J. Concrete. Struct. Mater., 6(4), 209-220. https://doi.org/10.1007/s40069-012-0025-9
  24. Sellevold, E.J. and Bjontegaard, O. (2006), "Coefficient of thermal expansion of cement paste and concrete: mechanisms of moisture interaction", Mater. Struct., 39(9), 809-815. https://doi.org/10.1617/s11527-006-9086-z
  25. Shin, E.C., Lee, J.S. and Cho, G.T. (2011), "A study on the frost penetration depth of pavement with field temperature data", J. Korean. Soc. Road. Eng., 13(1), 21-32. (in Korean) https://doi.org/10.7855/IJHE.2011.13.1.021
  26. Shin, J., Song, B., Lee, S., Shin, S., Kim, Y., Jung, G. and Jueon, S. (2012), "Contactless power transfer systems for on-line electric vehicle (OLEV)", IEEE International Conference on Electric Vehicle, South Carolina, USA, March.
  27. Song, S.G., Lee, J.H., Lee, H.J. and Hwang, E.Y. (2005), "Performance evaluation of perpetual asphalt pavements using an accelerated pavements tester", J. Korea Soc. Road Eng., 7(3), 1-10.
  28. Suh, N.P. (2012), "Fundamentals of design and deployment of large complex systems: OLEV, MH, and Mixalloy", J. Integ. Des. Proc. Sci., 16(3), 7-28.
  29. Tahmasebinia, F., Ranzi, G. and Zona, A. (2013), "Probabilistic three-dimensional finite element study on composite beams with steel trapezoidal decking", J. Constr. Steel. Res., 80, 394-411. https://doi.org/10.1016/j.jcsr.2012.10.003
  30. Tang, Y., Kusoglu, A., Karlsson, A.M., Santare, M.H., Cleghorn, S. and Johnson, W.B. (2008), "Mechanical properties of a reinforced composite polymer electrolyte membrane and its simulated performance in PEM fuel cells", J. Power Sour., 175(2), 817-825. https://doi.org/10.1016/j.jpowsour.2007.09.093
  31. Wang, X.S., Chen, T.J. and Ding, X.J. (2011), "Analysis of the mechanical impact of high-modulus asphalt concrete on road structure", Appl. Mech. Mater., 97-98, 334-339. https://doi.org/10.4028/www.scientific.net/AMM.97-98.334
  32. Yang, B.J., Ha, S.K., Pyo, S.H. and Lee, H.K. (2014), "Mechanical characteristics and strengthening effectiveness of random-chopped FRP composites containing air voids", Compos. Part B: Eng., 62, 159-166. https://doi.org/10.1016/j.compositesb.2014.02.015
  33. Zhou, F. and Young, B. (2012), "Numerical analysis and design of concrete-filled aluminum circular hollow section columns", Thin. Wall. Struct., 50(1), 45-55. https://doi.org/10.1016/j.tws.2011.10.002
  34. Zhu, J., Chen, C. and Han, Q. (2014), "Vehicle-bridge coupling vibration analysis based fatigue reliability prediction of prestressed concrete highway bridges", Struct. Eng. Mech., 49(2), 203-223. https://doi.org/10.12989/sem.2014.49.2.203

Cited by

  1. The electrically conductive carbon nanotube (CNT)/cement composites for accelerated curing and thermal cracking reduction vol.158, 2016, https://doi.org/10.1016/j.compstruct.2016.09.014
  2. Structural strengthening and damage behaviors of hybrid sprayed fiber-reinforced polymer composites containing carbon fiber cores vol.26, pp.2, 2017, https://doi.org/10.1177/1056789516673887
  3. Mechanical and Microscopic Characteristics of Polyurethane-Based Pervious Pavement Composites vol.14, pp.16, 2015, https://doi.org/10.3390/ma14164365