DOI QR코드

DOI QR Code

Temperature-dependent nonlocal nonlinear buckling analysis of functionally graded SWCNT-reinforced microplates embedded in an orthotropic elastomeric medium

  • Received : 2014.07.30
  • Accepted : 2014.10.29
  • Published : 2015.02.10

Abstract

In this study, nonlocal nonlinear buckling analysis of embedded polymeric temperature-dependent microplates resting on an elastic matrix as orthotropic temperature-dependent elastomeric medium is investigated. The microplate is reinforced by single-walled carbon nanotubes (SWCNTs) in which the equivalent material properties nanocomposite are estimated based on the rule of mixture. For the carbon-nanotube reinforced composite (CNTRC) plate, both cases of uniform distribution (UD) and functionally graded (FG) distribution patterns of SWCNT reinforcements are considered. The small size effects of microplate are considered based on Eringen's nonlocal theory. Based on orthotropic Mindlin plate theory along with von K$\acute{a}$rm$\acute{a}$n geometric nonlinearity and Hamilton's principle, the governing equations are derived. Generalized differential quadrature method (GDQM) is applied for obtaining the buckling load of system. The effects of different parameters such as nonlocal parameters, volume fractions of SWCNTs, distribution type of SWCNTs in polymer, elastomeric medium, aspect ratio, boundary condition, orientation of foundation orthtotropy direction and temperature are considered on the nonlinear buckling of the microplate. Results indicate that CNT distribution close to top and bottom are more efficient than those distributed nearby the mid-plane for increasing the buckling load.

Keywords

References

  1. Ahmadi, A.R., Farahmand, H. and Arabnejad, S. (2012), "Buckling analysis of rectangular flexural microplates using higher continuity p-version finite-element method", Int. J. Multisc. Computat. Eng., 10, 249-259. https://doi.org/10.1615/IntJMultCompEng.2012002511
  2. Akhavan, H., Hosseini Hashemi, Sh., Rokni Damavandi Taher, H., Alibeigloo, A. and Vahabi, Sh. (2009a), "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis", Comput. Mat. Sci., 44, 968-978. https://doi.org/10.1016/j.commatsci.2008.07.004
  3. Akhavan, H., Hosseini Hashemi, Sh., Rokni Damavandi Taher, H., Alibeigloo, A. and Vahabi, Sh. (2009b), "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part II: Frequency analysis" Comput. Mat. Sci., 44, 951-961. https://doi.org/10.1016/j.commatsci.2008.07.001
  4. Baltacioglu, A.K., Civalek, O., Akgoz, B. and Demir, F. (2011), "Large deflection analysis of laminated composite plates resting on nonlinear elastic foundations by the method of discrete singular convolution", Int. J. Pres. Ves. Pip., 88, 290-300. https://doi.org/10.1016/j.ijpvp.2011.06.004
  5. Chen, W. (1996), Differential Quadrature Method and its Applications in Engineering, Shanghai Jiao Tong University.
  6. Civalek, O. (2004), "Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns", Eng. Struct., 26, 171-186. https://doi.org/10.1016/j.engstruct.2003.09.005
  7. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10, 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  8. Esawi, A.M.K. and Farag, M.M. (2007), "Carbon nanotube reinforced composites: potential and current challenges", Mater. Des., 28, 2394-2401. https://doi.org/10.1016/j.matdes.2006.09.022
  9. Farahmand, H., Ahmadi, A.R. and Arabnejad, S. (2011), "Thermal buckling analysis of rectangular microplates using higher continuity p-version finite element method", Thin Wall. Struct., 49, 1584-1591. https://doi.org/10.1016/j.tws.2011.08.006
  10. Ferreira, A.J.M., Roque, C.M.C. and Martins, P.A.L.S. (2003), "Analysis of composite plates using higherorder shear deformation theory and a finite point formulation based on the multiquadric radial basis function method", Compos. Part B, 34, 627-636. https://doi.org/10.1016/S1359-8368(03)00083-0
  11. Jafari Mehrabadi, S., Sobhani Aragh, B., Khoshkhahesh, V. and Taherpour, A. (2012), "Mechanical buckling of nanocomposite rectangular plate reinforced by aligned and straight single-walled carbon nanotubes", Compos. Part B: Eng., 43, 2031-2040. https://doi.org/10.1016/j.compositesb.2012.01.067
  12. Fiedler, B., Gojny, F.H., Wichmann, M.H.G., Nolte, M.C.M. and Schulte, K. (2006), "Fundamental aspects of nano-reinforced composites", Compos. Sci. Technol., 66, 3115-3125. https://doi.org/10.1016/j.compscitech.2005.01.014
  13. Kim, S.M. (2004), "Buckling and vibration of a plate on elastic foundation subjected to in-plane compression and moving loads", Int. J. Solid. Struct., 41, 5647-5661. https://doi.org/10.1016/j.ijsolstr.2004.05.006
  14. Kutlu, A. and Omurtag, M.H. (2012), "Large deflection bending analysis of elliptic plates on orthotropic elastic foundation with mixed finite element method", Int. J. Mech. Sci., 65, 64-74. https://doi.org/10.1016/j.ijmecsci.2012.09.004
  15. Lei, Z.X., Liew, K.M. and Yu J.L. (2013), "Buckling analysis of functionally graded carbon nanotubereinforced composite plates using the element-freekp-Ritz method", Compos. Struct., 98, 160-168. https://doi.org/10.1016/j.compstruct.2012.11.006
  16. Morozov, N.F. and Tovstik, P.E. (2010), "On modes of buckling for a plate on an elastic foundation", Mech. Solid., 45, 519-528. https://doi.org/10.3103/S0025654410040035
  17. Reddy, J.N. (1984), "A simple higher order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719
  18. Salvetat-Delmotte, J.P. and Rubio, A. (2002), "Mechanical properties of carbon nanotubes: a fiber digest for beginners", Carbon, 40, 1729-1734. https://doi.org/10.1016/S0008-6223(02)00012-X
  19. Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36, 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073
  20. Shen, H.S. (2009), "Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments", Compos. Struct., 91, 9-19. https://doi.org/10.1016/j.compstruct.2009.04.026
  21. Shen, H.S. and Zhang, C.L. (2011), "Nonlocal beam model for nonlinear analysis of carbon nanotubes on elastomeric substrates", Comput. Mat. Sci., 50, 1022-1029. https://doi.org/10.1016/j.commatsci.2010.10.042
  22. Shu, C. (1999), Differential Quadrature and its Application in Engineering, Springer.
  23. Swaminathan, K. and Ragounadin, D. (2004), "Analytical solutions using a higher-order refined theory for the static analysis of antisymmetric angle-ply composite and sandwich plates", Compos. Struct., 64, 405-417. https://doi.org/10.1016/j.compstruct.2003.09.042
  24. Wattanasakulpong, N., Gangadhara Prusty, B., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Des., 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049

Cited by

  1. Stress and free vibration analysis of piezoelectric hollow circular FG-SWBNNTs reinforced nanocomposite plate based on modified couple stress theory subjected to thermo-mechanical loadings 2017, https://doi.org/10.1177/1077546317706887
  2. Size-dependent vibration analysis of a three-layered porous rectangular nano plate with piezo-electromagnetic face sheets subjected to pre loads based on SSDT pp.1537-6532, 2018, https://doi.org/10.1080/15376494.2018.1487612
  3. Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates vol.19, pp.6, 2015, https://doi.org/10.12989/cac.2017.19.6.677
  4. Thermo-mechanical analysis of carbon nanotube-reinforced composite sandwich beams vol.6, pp.2, 2015, https://doi.org/10.12989/csm.2017.6.2.207
  5. Nonlinear free vibration of FG-CNT reinforced composite plates vol.64, pp.3, 2015, https://doi.org/10.12989/sem.2017.64.3.381
  6. Buckling response with stretching effect of carbon nanotube-reinforced composite beams resting on elastic foundation vol.67, pp.2, 2018, https://doi.org/10.12989/sem.2018.67.2.125
  7. Bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams using integral form of Eringen's non-local elasticity theory vol.67, pp.4, 2015, https://doi.org/10.12989/sem.2018.67.4.417
  8. Buckling analysis of nanoplate-type temperature-dependent heterogeneous materials vol.7, pp.1, 2015, https://doi.org/10.12989/anr.2019.7.1.051
  9. Improvement of thermal buckling response of FG-CNT reinforced composite beams with temperature-dependent material properties resting on elastic foundations vol.6, pp.3, 2019, https://doi.org/10.12989/aas.2019.6.3.207