Acknowledgement
Supported by : National Natural Science Foundation, Central Universities
References
- An, X. (2001), "Study on thermally induced disturbance of large space structures", Ph.D. Dissertation, Northwestern Polytechnical University, Xi'an, China.
- Boley, B.A. (1956), "Thermally induced vibrations of beams", J.e Aeronaut. Sci., 23, 179-181.
- Boley, B.A. (1972), "Approximate analysis of thermally induced vibrations of beams and plates", J. Appl. Mech., 39, 212-216. https://doi.org/10.1115/1.3422615
- Boley, B.A., Bruno, A. and Chao, C.C. (1954), Some Solution of the Timoshenko Beam Equations, Columbia University, New York, NY, USA.
- Cheng, L., Xue, M. and Tang, Y. (2004), "Thermal-dynamic analysis of large scale space structure by FEM", Chin. J. Appl. Mech., 21(2), 1-10.
- Ding, Y. and Xue, M.D. (2005), "Thermo-structural analysis of space structures using Fourier tube elements", Comput. Mech., 36(4), 289-297. https://doi.org/10.1007/s00466-005-0666-5
- Fujino, Y. and Warnitchai, P. (1992), "An experimental and analytical study of autoparametric resonance in a 3DOF model of cable-stayed-beam", Nonlin. Dyn., 4(2), 111-138. https://doi.org/10.1007/BF00045250
- Jones, J.P. (1966), "Thermoelastic vibration of a beam", J. Acoust. Soc. Am., 39(3), 542-548. https://doi.org/10.1121/1.1909926
- Johnston, J.D. and Thornton, E.A. (1998), "Thermally induced attitude dynamics of a spacecraft with a flexible appendage", J. Guid. Control Dyn., 21(4), 581-587. https://doi.org/10.2514/2.4297
- Kawamura, R., Tanigawa, Y. and Kusuki, S. (2008), "Fundamental thermo-elasticity equations for thermally induced flexural vibration problems for inhomogeneous plates and thermoelastic dynamical response to a sinusoidally varying surface temperature", J. Eng. Math., 61(2), 143-160. https://doi.org/10.1007/s10665-007-9190-2
- Kumar, R., Mishra, B.K. and Jain, S.C. (2008), "Thermally induced vibration control of cylindrical shell using piezoelectric sensor and actuator", J. Adv. Manufact. Technol., 38(5), 551-562. https://doi.org/10.1007/s00170-007-1076-y
- Li, T., Jiang, J., Deng, H., Lin, Z. and Wang Z. (2013), "Form-finding methods for deployable mesh reflector antennas", Chin. J. Aeronaut., 26(5), 1276-1282 https://doi.org/10.1016/j.cja.2013.04.062
- Li, T. and Ma, Y. (2011), "Robust vibration control of flexible cable-strut structure with mixed uncertainties", J. Vib. Control, 17(9), 1407-1416. https://doi.org/10.1177/1077546310381100
- Li, T., Wang, Z. and Ma,Y. (2013), "Distributed vibration control of tensegrity structure", J. Vib. Control, 19(5), 720-728. https://doi.org/10.1177/1077546312438427
- Manish, S. (2008), Finite Element Method and Computational Structural Dynamics, Indian Institute of Technology, Roorkee, Haridwar, India.
- Mason, J.B. (1968), "Analysis of thermally induced structural vibrations by finite element techniques", NASA TMX-63488.
- Narasimha, M., Appu, K. and Ravikiran, K. (2010), "Thermally induced vibration of a simply supported beam using finite element method", Int. J. Eng. Sci. Tech., 2(12), 7874-7879.
- Reddy, J.N. (2005), An Introduction to the Finite Element Method, 2nd Edition, Tata McGraw-Hill, New Delhi, Delhi, India.
- Thornton, E.A. and Foster, R.S. (1992), "Dynamic response of rapidly heated space structures", Proceedings of the 33rd Structures, Structural Dynamics and Materials Conference, Dallas, USA, April.
- Thornton, E.A. and Kim, Y.A. (1993), "Thermally induced bending vibrations of a flexible rolled-up solar array", J. Spacecraft Rock., 30(4), 438-448. https://doi.org/10.2514/3.25550
- Timoshenko, S. and Googier, J.N. (1951), Theory of Elasticity, 2nd Edition, McGraw-Hill, New York, NY, USA.
Cited by
- Hybrid Active Wave/Mode Control of Space Prestressed Taut Cable Net Structures vol.10, pp.06, 2018, https://doi.org/10.1142/S175882511850062X
- An efficient and simple refined theory for free vibration of functionally graded plates under various boundary conditions vol.16, pp.1, 2015, https://doi.org/10.12989/gae.2018.16.1.001
- Temperature variation in steel beams subjected to thermal loads vol.34, pp.6, 2020, https://doi.org/10.12989/scs.2020.34.6.819
- Parameter analyses of suspended cables subjected to simultaneous combination, super and sub-harmonic excitations vol.40, pp.2, 2021, https://doi.org/10.12989/scs.2021.40.2.203