References
- Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350-355. https://doi.org/10.1038/nature02871
- Asagiri, M., and Takayanagi, H. (2007). The molecular understanding of osteoclast differentiation. Bone 40, 251-264. https://doi.org/10.1016/j.bone.2006.09.023
- Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
- Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
- Cheng, P., Chen, C., He, H.B., Hu, R., Zhou, H.D., Xie, H., Zhu, W., Dai, R.C., Wu, X.P., Liao, E.Y., et al. (2013). miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J. Bone Miner. Res. 28, 1180-1190. https://doi.org/10.1002/jbmr.1845
- Danks, L., and Takayanagi, H. (2013). Immunology and bone. J. Biochem. 154, 29-39. https://doi.org/10.1093/jb/mvt049
- Kim, K., Kim, J.H., Lee, J., Jin, H.M., Kook, H., Kim, K.K., Lee, S.Y., and Kim, N. (2007). MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 109, 3253-3259. https://doi.org/10.1182/blood-2006-09-048249
- Kim, J.H., Kim, K., Youn, B.U., Jin, H.M., Kim, J.Y., Moon, J.B., Ko, A., Seo, S.B., Lee, K.Y., and Kim, N. (2011). RANKL induces NFATc1 acetylation and stability via histone acetyltransferases during osteoclast differentiation. Biochem. J. 436, 253-262. https://doi.org/10.1042/BJ20110062
- Lee, S.H., Rho, J., Jeong, D., Sul, J.Y., Kim, T., Kim, N., Kang, J.S., Miyamoto, T., Suda, T., Lee, S.K., et al. (2006). v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12, 1403-1409. https://doi.org/10.1038/nm1514
- Lee, Y., Kim, H.J., Park, C.K., Kim, Y.G., Lee, H.J., Kim, J.Y., and Kim, H.H. (2013). MicroRNA-124 regulates osteoclast differentiation. Bone 56, 383-389. https://doi.org/10.1016/j.bone.2013.07.007
- Luzi, E., Marini, F., Sala, S.C., Tognarini, I., Galli, G., and Brandi, M.L. (2008). Osteogenic differentiation of human adipose tissuederived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J. Bone Miner. Res. 23, 287-295.
- Miyamoto, T. (2011). Regulators of osteoclast differentiation and cell-cell fusion. Keio J. Med. 60, 101-105. https://doi.org/10.2302/kjm.60.101
- Miyauchi, Y., Ninomiya, K., Miyamoto, H., Sakamoto, A., Iwasaki, R., Hoshi, H., Miyamoto, K., Hao, W., Yoshida, S., Morioka, H., et al. (2010). The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis. J. Exp. Med. 207, 751-762. https://doi.org/10.1084/jem.20091957
- Nishida, T., Emura, K., Kubota, S., Lyons, K.M., and Takigawa, M. (2011). CCN family 2/connective tissue growth factor (CCN2/CTGF) promotes osteoclastogenesis via induction of and interaction with dendritic cell-specific transmembrane protein (DC-STAMP). J. Bone Miner. Res. 26, 351-363. https://doi.org/10.1002/jbmr.222
- Nozawa, K., Fujishiro, M., Kawasaki, M., Kaneko, H., Iwabuchi, K., Yanagida, M., Suzuki, F., Miyazawa, K., Takasaki, Y., Ogawa, H., et al. (2009). Connective tissue growth factor promotes articular damage by increased osteoclastogenesis in patients with rheumatoid arthritis. Arthritis Res. Ther. 11, R174. https://doi.org/10.1186/ar2863
- Rossi, M., Pitari, M.R., Amodio, N., Di Martino, M.T., Conforti, F., Leone, E., Botta, C., Paolino, F.M., Del Giudice, T., Iuliano, E., et al. (2013). miR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myeloma-related bone disease. J. Cell. Physiol. 228, 1506-1515. https://doi.org/10.1002/jcp.24306
- Takigawa, M. (2013). CCN2: a master regulator of the genesis of bone and cartilage. J. Cell Commun. Signal. 7, 191-201. https://doi.org/10.1007/s12079-013-0204-8
- Walsh, M.C., Kim, N., Kadono, Y., Rho, J., Lee, S.Y., Lorenzo, J., and Choi, Y. (2006). Osteoimmunology: interplay between the immune system and bone metabolism. Annu. Rev. Immunol. 24, 33-63. https://doi.org/10.1146/annurev.immunol.24.021605.090646
- Wei, C., Kim, I.K., Kumar, S., Jayasinghe, S., Hong, N., Castoldi, G., Catalucci, D., Jones, W.K., and Gupta, S. (2013). NF-kappaB mediated miR-26a regulation in cardiac fibrosis. J. Cell. Physiol. 228, 1433-1442. https://doi.org/10.1002/jcp.24296
- Wong, C.F., and Tellam, R.L. (2008). MicroRNA-26a targets the histone methyltransferase enhancer of zeste homolog 2 during myogenesis. J. Biol. Chem. 283, 9836-9843. https://doi.org/10.1074/jbc.M709614200
- Yagi, M., Miyamoto, T., Sawatani, Y., Iwamoto, K., Hosogane, N., Fujita, N., Morita, K., Ninomiya, K., Suzuki, T., Miyamoto, K., et al. (2005). DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 202, 345-351. https://doi.org/10.1084/jem.20050645
- Youn, B.U., Kim, K., Kim, J.H., Lee, J., Moon, J.B., Kim, I., Park, Y.W., and Kim, N. (2013). SLAT negatively regulates RANKLinduced osteoclast differentiation. Mol. Cells 36, 252-257. https://doi.org/10.1007/s10059-013-0159-x
- Zhang, J., Zhao, H., Chen, J., Xia, B., Jin, Y., Wei, W., Shen, J., and Huang, Y. (2012). Interferon-beta-induced miR-155 inhibits osteoclast differentiation by targeting SOCS1 and MITF. FEBS Lett. 586, 3255-3262. https://doi.org/10.1016/j.febslet.2012.06.047
- Zhao, B., Takami, M., Yamada, A., Wang, X., Koga, T., Hu, X., Tamura, T., Ozato, K., Choi, Y., Ivashkiv, L.B., et al. (2009). Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat. Med. 15, 1066-1071. https://doi.org/10.1038/nm.2007
- Zhou, J., Ju, W., Wang, D., Wu, L., Zhu, X., Guo, Z., and He, X. (2012). Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration. PLoS One 7, e33577. https://doi.org/10.1371/journal.pone.0033577
Cited by
- The Regulatory Roles of MicroRNAs in Bone Remodeling and Perspectives as Biomarkers in Osteoporosis vol.2016, 2016, https://doi.org/10.1155/2016/1652417
- The role of microRNAs in bone remodeling vol.7, pp.3, 2015, https://doi.org/10.1038/ijos.2015.22
- NRROS Negatively Regulates Osteoclast Differentiation by Inhibiting RANKL-Mediated NF-κB and Reactive Oxygen Species Pathways vol.38, pp.10, 2015, https://doi.org/10.14348/molcells.2015.0177
- miRNAs Related to Skeletal Diseases vol.25, pp.17, 2015, https://doi.org/10.1089/scd.2016.0133
- MicroRNAs in Osteoclastogenesis and Function: Potential Therapeutic Targets for Osteoporosis vol.17, pp.3, 2016, https://doi.org/10.3390/ijms17030349
- Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects vol.7, pp.1, 2015, https://doi.org/10.1038/ncomms10376
- Inhibition of miR-222-3p activity promoted osteogenic differentiation of hBMSCs by regulating Smad5-RUNX2 signal axis vol.470, pp.3, 2015, https://doi.org/10.1016/j.bbrc.2016.01.133
- miR-101 Inhibiting Cell Proliferation, Migration and Invasion in Hepatocellular Carcinoma through Downregulating Girdin vol.39, pp.2, 2015, https://doi.org/10.14348/molcells.2016.2161
- Plasma miR-26a as a Diagnostic Biomarker Regulates Cytokine Expression in Systemic Juvenile Idiopathic Arthritis vol.43, pp.8, 2016, https://doi.org/10.3899/jrheum.150593
- Epigenetic Regulation of Bone Remodeling and Its Impacts in Osteoporosis vol.17, pp.9, 2015, https://doi.org/10.3390/ijms17091446
- MicroRNAs in bone development and their diagnostic and therapeutic potentials in osteoporosis vol.58, pp.1, 2017, https://doi.org/10.3109/03008207.2016.1139580
- Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression vol.40, pp.3, 2017, https://doi.org/10.14348/molcells.2017.2303
- miRNA-340 inhibits osteoclast differentiation via repression of MITF vol.37, pp.4, 2015, https://doi.org/10.1042/bsr20170302
- FAM19A5, a brain-specific chemokine, inhibits RANKL-induced osteoclast formation through formyl peptide receptor 2 vol.7, pp.None, 2015, https://doi.org/10.1038/s41598-017-15586-0
- Scaffold-Based microRNA Therapies in Regenerative Medicine and Cancer vol.7, pp.1, 2018, https://doi.org/10.1002/adhm.201700695
- Overexpression of miR-146a blocks the effect of LPS on RANKL-induced osteoclast differentiation vol.18, pp.6, 2015, https://doi.org/10.3892/mmr.2018.9610
- The emerging role of microRNAs in bone remodeling and its therapeutic implications for osteoporosis vol.38, pp.3, 2015, https://doi.org/10.1042/bsr20180453
- Denosumab in the treatment of glucocorticoid-induced osteoporosis vol.38, pp.11, 2015, https://doi.org/10.1007/s00296-018-4106-1
- MicroRNAs: Key Regulators to Understand Osteoclast Differentiation? vol.10, pp.None, 2015, https://doi.org/10.3389/fimmu.2019.00375
- MicroRNAs Are Critical Regulators of Osteoclast Differentiation vol.5, pp.1, 2015, https://doi.org/10.1007/s40610-019-0116-3
- The Molecular Mechanism of Vitamin E as a Bone-Protecting Agent: A Review on Current Evidence vol.20, pp.6, 2015, https://doi.org/10.3390/ijms20061453
- MiRNA‐218 regulates osteoclast differentiation and inflammation response in periodontitis rats through Mmp9 vol.21, pp.4, 2015, https://doi.org/10.1111/cmi.12979
- Cryptotanshinone inhibits RANKL‐induced osteoclastogenesis by regulating ERK and NF‐κB signaling pathways vol.120, pp.5, 2019, https://doi.org/10.1002/jcb.28008
- MiR-125a-5p promotes osteoclastogenesis by targeting TNFRSF1B vol.24, pp.1, 2015, https://doi.org/10.1186/s11658-019-0146-0
- Circulating MicroRNA‐19b Identified From Osteoporotic Vertebral Compression Fracture Patients Increases Bone Formation vol.35, pp.2, 2015, https://doi.org/10.1002/jbmr.3892
- Low protein intake during reproduction compromises the recovery of lactation‐induced bone loss in female mouse dams without affecting skeletal muscles vol.34, pp.9, 2020, https://doi.org/10.1096/fj.202001131r
- Role of MicroRNAs in Bone Pathology during Chikungunya Virus Infection vol.12, pp.11, 2020, https://doi.org/10.3390/v12111207
- 3D Hybrid Nanofiber Aerogels Combining with Nanoparticles Made of a Biocleavable and Targeting Polycation and MiR‐26a for Bone Repair vol.30, pp.49, 2020, https://doi.org/10.1002/adfm.202005531
- The roles of miRNA, lncRNA and circRNA in the development of osteoporosis vol.53, pp.1, 2020, https://doi.org/10.1186/s40659-020-00309-z
- Bone Aging, Cellular Senescence, and Osteoporosis vol.5, pp.4, 2015, https://doi.org/10.1002/jbm4.10488
- Effects of fluid flow shear stress to mouse muscle cells on the bone actions of muscle cell-derived extracellular vesicless vol.16, pp.5, 2021, https://doi.org/10.1371/journal.pone.0250741