DOI QR코드

DOI QR Code

MicroRNA-26a Regulates RANKL-Induced Osteoclast Formation

  • Kim, Kabsun (Department of Pharmacology, Medical Research Center for Gene Regulation, Chonnam National University Medical School) ;
  • Kim, Jung Ha (Department of Pharmacology, Medical Research Center for Gene Regulation, Chonnam National University Medical School) ;
  • Kim, Inyoung (Department of Pharmacology, Medical Research Center for Gene Regulation, Chonnam National University Medical School) ;
  • Lee, Jongwon (Department of Pharmacology, Medical Research Center for Gene Regulation, Chonnam National University Medical School) ;
  • Seong, Semun (Department of Pharmacology, Medical Research Center for Gene Regulation, Chonnam National University Medical School) ;
  • Park, Yong-Wook (Department of Rheumatology, Chonnam National University Medical School and Hospital) ;
  • Kim, Nacksung (Department of Pharmacology, Medical Research Center for Gene Regulation, Chonnam National University Medical School)
  • Received : 2014.09.02
  • Accepted : 2014.10.17
  • Published : 2015.01.31

Abstract

Osteoclasts are unique cells responsible for the resorption of bone matrix. MicroRNAs (miRNAs) are involved in the regulation of a wide range of physiological processes. Here, we examined the role of miR-26a in RANKL-induced osteoclastogenesis. The expression of miR-26a was upregulated by RANKL at the late stage of osteoclastogenesis. Ectopic expression of an miR-26a mimic in osteoclast precursor cells attenuated osteoclast formation, actin-ring formation, and bone resorption by suppressing the expression of connective tissue growth factor/CCN family 2 (CTGF/CCN2), which can promote osteoclast formation via upregulation of dendritic cell-specific transmembrane protein (DC-STAMP). On the other hand, overexpression of miR-26a inhibitor enhanced RANKL-induced osteoclast formation and function as well as CTGF expression. In addition, the inhibitory effect of miR-26a on osteoclast formation and function was prevented by treatment with recombinant CTGF. Collectively, our results suggest that miR-26a modulates osteoclast formation and function through the regulation of CTGF.

Keywords

References

  1. Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350-355. https://doi.org/10.1038/nature02871
  2. Asagiri, M., and Takayanagi, H. (2007). The molecular understanding of osteoclast differentiation. Bone 40, 251-264. https://doi.org/10.1016/j.bone.2006.09.023
  3. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
  4. Boyle, W.J., Simonet, W.S., and Lacey, D.L. (2003). Osteoclast differentiation and activation. Nature 423, 337-342. https://doi.org/10.1038/nature01658
  5. Cheng, P., Chen, C., He, H.B., Hu, R., Zhou, H.D., Xie, H., Zhu, W., Dai, R.C., Wu, X.P., Liao, E.Y., et al. (2013). miR-148a regulates osteoclastogenesis by targeting V-maf musculoaponeurotic fibrosarcoma oncogene homolog B. J. Bone Miner. Res. 28, 1180-1190. https://doi.org/10.1002/jbmr.1845
  6. Danks, L., and Takayanagi, H. (2013). Immunology and bone. J. Biochem. 154, 29-39. https://doi.org/10.1093/jb/mvt049
  7. Kim, K., Kim, J.H., Lee, J., Jin, H.M., Kook, H., Kim, K.K., Lee, S.Y., and Kim, N. (2007). MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 109, 3253-3259. https://doi.org/10.1182/blood-2006-09-048249
  8. Kim, J.H., Kim, K., Youn, B.U., Jin, H.M., Kim, J.Y., Moon, J.B., Ko, A., Seo, S.B., Lee, K.Y., and Kim, N. (2011). RANKL induces NFATc1 acetylation and stability via histone acetyltransferases during osteoclast differentiation. Biochem. J. 436, 253-262. https://doi.org/10.1042/BJ20110062
  9. Lee, S.H., Rho, J., Jeong, D., Sul, J.Y., Kim, T., Kim, N., Kang, J.S., Miyamoto, T., Suda, T., Lee, S.K., et al. (2006). v-ATPase V0 subunit d2-deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 12, 1403-1409. https://doi.org/10.1038/nm1514
  10. Lee, Y., Kim, H.J., Park, C.K., Kim, Y.G., Lee, H.J., Kim, J.Y., and Kim, H.H. (2013). MicroRNA-124 regulates osteoclast differentiation. Bone 56, 383-389. https://doi.org/10.1016/j.bone.2013.07.007
  11. Luzi, E., Marini, F., Sala, S.C., Tognarini, I., Galli, G., and Brandi, M.L. (2008). Osteogenic differentiation of human adipose tissuederived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J. Bone Miner. Res. 23, 287-295.
  12. Miyamoto, T. (2011). Regulators of osteoclast differentiation and cell-cell fusion. Keio J. Med. 60, 101-105. https://doi.org/10.2302/kjm.60.101
  13. Miyauchi, Y., Ninomiya, K., Miyamoto, H., Sakamoto, A., Iwasaki, R., Hoshi, H., Miyamoto, K., Hao, W., Yoshida, S., Morioka, H., et al. (2010). The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis. J. Exp. Med. 207, 751-762. https://doi.org/10.1084/jem.20091957
  14. Nishida, T., Emura, K., Kubota, S., Lyons, K.M., and Takigawa, M. (2011). CCN family 2/connective tissue growth factor (CCN2/CTGF) promotes osteoclastogenesis via induction of and interaction with dendritic cell-specific transmembrane protein (DC-STAMP). J. Bone Miner. Res. 26, 351-363. https://doi.org/10.1002/jbmr.222
  15. Nozawa, K., Fujishiro, M., Kawasaki, M., Kaneko, H., Iwabuchi, K., Yanagida, M., Suzuki, F., Miyazawa, K., Takasaki, Y., Ogawa, H., et al. (2009). Connective tissue growth factor promotes articular damage by increased osteoclastogenesis in patients with rheumatoid arthritis. Arthritis Res. Ther. 11, R174. https://doi.org/10.1186/ar2863
  16. Rossi, M., Pitari, M.R., Amodio, N., Di Martino, M.T., Conforti, F., Leone, E., Botta, C., Paolino, F.M., Del Giudice, T., Iuliano, E., et al. (2013). miR-29b negatively regulates human osteoclastic cell differentiation and function: implications for the treatment of multiple myeloma-related bone disease. J. Cell. Physiol. 228, 1506-1515. https://doi.org/10.1002/jcp.24306
  17. Takigawa, M. (2013). CCN2: a master regulator of the genesis of bone and cartilage. J. Cell Commun. Signal. 7, 191-201. https://doi.org/10.1007/s12079-013-0204-8
  18. Walsh, M.C., Kim, N., Kadono, Y., Rho, J., Lee, S.Y., Lorenzo, J., and Choi, Y. (2006). Osteoimmunology: interplay between the immune system and bone metabolism. Annu. Rev. Immunol. 24, 33-63. https://doi.org/10.1146/annurev.immunol.24.021605.090646
  19. Wei, C., Kim, I.K., Kumar, S., Jayasinghe, S., Hong, N., Castoldi, G., Catalucci, D., Jones, W.K., and Gupta, S. (2013). NF-kappaB mediated miR-26a regulation in cardiac fibrosis. J. Cell. Physiol. 228, 1433-1442. https://doi.org/10.1002/jcp.24296
  20. Wong, C.F., and Tellam, R.L. (2008). MicroRNA-26a targets the histone methyltransferase enhancer of zeste homolog 2 during myogenesis. J. Biol. Chem. 283, 9836-9843. https://doi.org/10.1074/jbc.M709614200
  21. Yagi, M., Miyamoto, T., Sawatani, Y., Iwamoto, K., Hosogane, N., Fujita, N., Morita, K., Ninomiya, K., Suzuki, T., Miyamoto, K., et al. (2005). DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J. Exp. Med. 202, 345-351. https://doi.org/10.1084/jem.20050645
  22. Youn, B.U., Kim, K., Kim, J.H., Lee, J., Moon, J.B., Kim, I., Park, Y.W., and Kim, N. (2013). SLAT negatively regulates RANKLinduced osteoclast differentiation. Mol. Cells 36, 252-257. https://doi.org/10.1007/s10059-013-0159-x
  23. Zhang, J., Zhao, H., Chen, J., Xia, B., Jin, Y., Wei, W., Shen, J., and Huang, Y. (2012). Interferon-beta-induced miR-155 inhibits osteoclast differentiation by targeting SOCS1 and MITF. FEBS Lett. 586, 3255-3262. https://doi.org/10.1016/j.febslet.2012.06.047
  24. Zhao, B., Takami, M., Yamada, A., Wang, X., Koga, T., Hu, X., Tamura, T., Ozato, K., Choi, Y., Ivashkiv, L.B., et al. (2009). Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat. Med. 15, 1066-1071. https://doi.org/10.1038/nm.2007
  25. Zhou, J., Ju, W., Wang, D., Wu, L., Zhu, X., Guo, Z., and He, X. (2012). Down-regulation of microRNA-26a promotes mouse hepatocyte proliferation during liver regeneration. PLoS One 7, e33577. https://doi.org/10.1371/journal.pone.0033577

Cited by

  1. The Regulatory Roles of MicroRNAs in Bone Remodeling and Perspectives as Biomarkers in Osteoporosis vol.2016, 2016, https://doi.org/10.1155/2016/1652417
  2. The role of microRNAs in bone remodeling vol.7, pp.3, 2015, https://doi.org/10.1038/ijos.2015.22
  3. NRROS Negatively Regulates Osteoclast Differentiation by Inhibiting RANKL-Mediated NF-κB and Reactive Oxygen Species Pathways vol.38, pp.10, 2015, https://doi.org/10.14348/molcells.2015.0177
  4. miRNAs Related to Skeletal Diseases vol.25, pp.17, 2015, https://doi.org/10.1089/scd.2016.0133
  5. MicroRNAs in Osteoclastogenesis and Function: Potential Therapeutic Targets for Osteoporosis vol.17, pp.3, 2016, https://doi.org/10.3390/ijms17030349
  6. Cell-free 3D scaffold with two-stage delivery of miRNA-26a to regenerate critical-sized bone defects vol.7, pp.1, 2015, https://doi.org/10.1038/ncomms10376
  7. Inhibition of miR-222-3p activity promoted osteogenic differentiation of hBMSCs by regulating Smad5-RUNX2 signal axis vol.470, pp.3, 2015, https://doi.org/10.1016/j.bbrc.2016.01.133
  8. miR-101 Inhibiting Cell Proliferation, Migration and Invasion in Hepatocellular Carcinoma through Downregulating Girdin vol.39, pp.2, 2015, https://doi.org/10.14348/molcells.2016.2161
  9. Plasma miR-26a as a Diagnostic Biomarker Regulates Cytokine Expression in Systemic Juvenile Idiopathic Arthritis vol.43, pp.8, 2016, https://doi.org/10.3899/jrheum.150593
  10. Epigenetic Regulation of Bone Remodeling and Its Impacts in Osteoporosis vol.17, pp.9, 2015, https://doi.org/10.3390/ijms17091446
  11. MicroRNAs in bone development and their diagnostic and therapeutic potentials in osteoporosis vol.58, pp.1, 2017, https://doi.org/10.3109/03008207.2016.1139580
  12. Transforming Growth Factor β1/Smad4 Signaling Affects Osteoclast Differentiation via Regulation of miR-155 Expression vol.40, pp.3, 2017, https://doi.org/10.14348/molcells.2017.2303
  13. miRNA-340 inhibits osteoclast differentiation via repression of MITF vol.37, pp.4, 2015, https://doi.org/10.1042/bsr20170302
  14. FAM19A5, a brain-specific chemokine, inhibits RANKL-induced osteoclast formation through formyl peptide receptor 2 vol.7, pp.None, 2015, https://doi.org/10.1038/s41598-017-15586-0
  15. Scaffold-Based microRNA Therapies in Regenerative Medicine and Cancer vol.7, pp.1, 2018, https://doi.org/10.1002/adhm.201700695
  16. Overexpression of miR-146a blocks the effect of LPS on RANKL-induced osteoclast differentiation vol.18, pp.6, 2015, https://doi.org/10.3892/mmr.2018.9610
  17. The emerging role of microRNAs in bone remodeling and its therapeutic implications for osteoporosis vol.38, pp.3, 2015, https://doi.org/10.1042/bsr20180453
  18. Denosumab in the treatment of glucocorticoid-induced osteoporosis vol.38, pp.11, 2015, https://doi.org/10.1007/s00296-018-4106-1
  19. MicroRNAs: Key Regulators to Understand Osteoclast Differentiation? vol.10, pp.None, 2015, https://doi.org/10.3389/fimmu.2019.00375
  20. MicroRNAs Are Critical Regulators of Osteoclast Differentiation vol.5, pp.1, 2015, https://doi.org/10.1007/s40610-019-0116-3
  21. The Molecular Mechanism of Vitamin E as a Bone-Protecting Agent: A Review on Current Evidence vol.20, pp.6, 2015, https://doi.org/10.3390/ijms20061453
  22. MiRNA‐218 regulates osteoclast differentiation and inflammation response in periodontitis rats through Mmp9 vol.21, pp.4, 2015, https://doi.org/10.1111/cmi.12979
  23. Cryptotanshinone inhibits RANKL‐induced osteoclastogenesis by regulating ERK and NF‐κB signaling pathways vol.120, pp.5, 2019, https://doi.org/10.1002/jcb.28008
  24. MiR-125a-5p promotes osteoclastogenesis by targeting TNFRSF1B vol.24, pp.1, 2015, https://doi.org/10.1186/s11658-019-0146-0
  25. Circulating MicroRNA‐19b Identified From Osteoporotic Vertebral Compression Fracture Patients Increases Bone Formation vol.35, pp.2, 2015, https://doi.org/10.1002/jbmr.3892
  26. Low protein intake during reproduction compromises the recovery of lactation‐induced bone loss in female mouse dams without affecting skeletal muscles vol.34, pp.9, 2020, https://doi.org/10.1096/fj.202001131r
  27. Role of MicroRNAs in Bone Pathology during Chikungunya Virus Infection vol.12, pp.11, 2020, https://doi.org/10.3390/v12111207
  28. 3D Hybrid Nanofiber Aerogels Combining with Nanoparticles Made of a Biocleavable and Targeting Polycation and MiR‐26a for Bone Repair vol.30, pp.49, 2020, https://doi.org/10.1002/adfm.202005531
  29. The roles of miRNA, lncRNA and circRNA in the development of osteoporosis vol.53, pp.1, 2020, https://doi.org/10.1186/s40659-020-00309-z
  30. Bone Aging, Cellular Senescence, and Osteoporosis vol.5, pp.4, 2015, https://doi.org/10.1002/jbm4.10488
  31. Effects of fluid flow shear stress to mouse muscle cells on the bone actions of muscle cell-derived extracellular vesicless vol.16, pp.5, 2021, https://doi.org/10.1371/journal.pone.0250741