DOI QR코드

DOI QR Code

Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth

  • Park, Hyeong Cheol (Division of Applied Life Science (BK21 Plus Program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Lee, Shinyoung (Division of Applied Life Science (BK21 Plus Program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Park, Bokyung (Division of Applied Life Science (BK21 Plus Program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Choi, Wonkyun (Division of Applied Life Science (BK21 Plus Program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Kim, Chanmin (Division of Applied Life Science (BK21 Plus Program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Lee, Sanghun (Department of Botany and Plant Pathology, Purdue University) ;
  • Chung, Woo Sik (Division of Applied Life Science (BK21 Plus Program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Lee, Sang Yeol (Division of Applied Life Science (BK21 Plus Program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Sabir, Jamal (College of Science, King Abdulaziz University) ;
  • Bressan, Ray A. (Division of Applied Life Science (BK21 Plus Program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Bohnert, Hans J. (Division of Applied Life Science (BK21 Plus Program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Mengiste, Tesfaye (Department of Botany and Plant Pathology, Purdue University) ;
  • Yun, Dae-Jin (Division of Applied Life Science (BK21 Plus Program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
  • 투고 : 2013.06.11
  • 심사 : 2014.10.14
  • 발행 : 2015.01.31

초록

In the interaction between plants and pathogens, carbon (C) resources provide energy and C skeletons to maintain, among many functions, the plant immune system. However, variations in C availability on pathogen associated molecular pattern (PAMP) triggered immunity (PTI) have not been systematically examined. Here, three types of starch mutants with enhanced susceptibility to Pseudomonas syringae pv. tomato DC3000 hrcC were examined for PTI. In a dark period-dependent manner, the mutants showed compromised induction of a PTI marker, and callose accumulation in response to the bacterial PAMP flagellin, flg22. In combination with weakened PTI responses in wild type by inhibition of the TCA cycle, the experiments determined the necessity of C-derived energy in establishing PTI. Global gene expression analyses identified flg22 responsive genes displaying C supply-dependent patterns. Nutrient recycling-related genes were regulated similarly by C-limitation and flg22, indicating re-arrangements of expression programs to redirect resources that establish or strengthen PTI. Ethylene and NAC transcription factors appear to play roles in these processes. Under C-limitation, PTI appears compromised based on suppression of genes required for continued biosynthetic capacity and defenses through flg22. Our results provide a foundation for the intuitive perception of the interplay between plant nutrition status and pathogen defense.

키워드

참고문헌

  1. Asai, T., Tena, G., Plotnikova, J., Willmann, M.R., Chiu, W.L., Gomez-Gomez, L., Boller, T., Ausubel, F.M., and Sheen J. (2002). MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415, 977-983. https://doi.org/10.1038/415977a
  2. Baena-Gonzalez, E., Rolland, F., Thevelein, J.M., and Sheen, J. (2007). A central integrator of transcription networks in plant stress and energy signalling. Nature 448, 938-942. https://doi.org/10.1038/nature06069
  3. Balazadeh, S., Riano-Pachon, D.M. and Mueller-Roeber, B. (2008). Transcription factors regulating leaf senescence in Arabidopsis thaliana. Plant Biol. (Stuttg) 10 Suppl 1, 63-75. https://doi.org/10.1111/j.1438-8677.2008.00088.x
  4. Balazadeh, S., Kwasniewski, M., Caldana, C., Mehrnia, M., Zanor, M.I., Xue, G.P., and Mueller-Roeber, B. (2011). ORS1, an H(2)O(2)- responsive NAC transcription factor, controls senescence in Arabidopsis thaliana. Mol. Plant 4, 346-360. https://doi.org/10.1093/mp/ssq080
  5. Benhamou, N., Grenier, J., and Chrispeels, M.J. (1991). Accumulation of beta-fructosidase in the cell walls of tomato roots following infection by a fungal wilt pathogen. Plant Physiol. 97, 739-750. https://doi.org/10.1104/pp.97.2.739
  6. Berger, S., Sinha, A.K., and Roitsch, T. (2007). Plant physiology meets phytopathology: plant primary metabolism and plantpathogen interactions. J. Exp. Bot. 58, 4019-4026. https://doi.org/10.1093/jxb/erm298
  7. Biemelt, S., and Sonnewald, U. (2006). Plant-microbe interactions to probe regulation of plant carbon metabolism. J. Plant Physiol. 163, 307-318. https://doi.org/10.1016/j.jplph.2005.10.011
  8. Bittel, P., and Robatzek, S. (2007). Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr. Opin. Plant Biol. 10, 335-341. https://doi.org/10.1016/j.pbi.2007.04.021
  9. Blanco, F., Garreton, V., Frey, N., Dominguez, C., Perez-Acle, T., Van der Straeten, D., Jordana, X., and Holuigue, L. (2005). Identification of NPR1-dependent and independent genes early induced by salicylic acid treatment in Arabidopsis. Plant Mol. Biol. 59, 927-944. https://doi.org/10.1007/s11103-005-2227-x
  10. Block, A., Guo, M., Li, G., Elowsky, C., Clemente, T.E., and Alfano, J.R. (2010). The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development and suppresses plant innate immunity. Cell Microbiol. 12, 318-330. https://doi.org/10.1111/j.1462-5822.2009.01396.x
  11. Bolton, M.D. (2009). Primary metabolism and plant defense--fuel for the fire. Mol. Plant Microbe Interact. 22, 487-497. https://doi.org/10.1094/MPMI-22-5-0487
  12. Bonfig, K.B., Schreiber, U., Gabler, A., Roitsch, T., and Berger, S. (2006). Infection with virulent and avirulent P-syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves. Planta 225, 1-12. https://doi.org/10.1007/s00425-006-0303-3
  13. Bonfig, K.B., Gabler, A., Simon, U.K., Luschin-Ebengreuth, N., Hatz, M., Berger, S., Muhammad, N., Zeier, J., Sinha, A.K., and Roitsch, T. (2010). Post-translational derepression of invertase activity in source leaves via down-regulation of invertase inhibitor expression is part of the plant defense response. Mol. Plant 3, 1037-1048. https://doi.org/10.1093/mp/ssq053
  14. Boudsocq, M., Willmann, M.R., McCormack, M., Lee, H., Shan, L., He, P., Bush, J., Cheng, S.H., and Sheen, J. (2010). Differential innate immune signalling via Ca(2+) sensor protein kinases. Nature 464, 418-422. https://doi.org/10.1038/nature08794
  15. Boutrot, F., Segonzac, C., Chang, K.N., Qiao, H., Ecker, J.R., Zipfel, C., and Rathjen, J.P. (2010). Direct transcriptional control of the Arabidopsis immune receptor FLS2 by the ethylene-dependent transcription factors EIN3 and EIL1. Proc. Natl. Acad. Sci. USA 107, 14502-14507. https://doi.org/10.1073/pnas.1003347107
  16. Caspar, T., Huber, S.C., and Somerville, C. (1985). Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity. Plant Physiol. 79, 11-17. https://doi.org/10.1104/pp.79.1.11
  17. Caspar, T., Lin, T.P., Kakefuda, G., Benbow, L., Preiss, J., and Somerville, C. (1991). Mutants of Arabidopsis with altered regulation of starch degradation. Plant Physiol. 95, 1181-1188. https://doi.org/10.1104/pp.95.4.1181
  18. Chandran, D., Inada, N., Hather, G., Kleindt, C.K., and Wildermuth, M.C. (2010). Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proc. Natl. Acad. Sci. USA 107, 460-465. https://doi.org/10.1073/pnas.0912492107
  19. Chou, H.M., Bundock, N., Rolfe, S.A., and Scholes, J.D. (2000). Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism. Mol. Plant Pathol. 1, 99-113. https://doi.org/10.1046/j.1364-3703.2000.00013.x
  20. Consonni, C., Bednarek, P., Humphry, M., Francocci, F., Ferrari, S., Harzen, A., Ver Loren van Themaat, E., and Panstruga, R. (2010). Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. Plant Physiol. 152, 1544-1561. https://doi.org/10.1104/pp.109.147660
  21. Consonni, C., Humphry, M.E., Hartmann, H.A., Livaja, M., Durner, J., Westphal, L., Vogel, J., Lipka, V., Kemmerling, B., Schulze- Lefert, P., et al. (2006). Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat. Genet. 38, 716-720. https://doi.org/10.1038/ng1806
  22. Contento, A.L., Kim, S.J., and Bassham, D.C. (2004). Transcriptome profiling of the response of Arabidopsis suspension culture cells to Suc starvation. Plant Physiol. 135, 2330-2347. https://doi.org/10.1104/pp.104.044362
  23. Engelsdorf, T., Horst, R.J., Prols, R., Proschel, M., Dietz, F., Huckelhoven, R., and Voll, L.M. (2013). Reduced carbohydrate availability enhances the susceptibility of Arabidopsis toward Colletotrichum higginsianum. Plant Physiol. 162, 225-238. https://doi.org/10.1104/pp.112.209676
  24. Essmann, J., Schmitz-Thom, I., Schon, H., Sonnewald, S., Weis, E., and Scharte, J. (2008). RNA interference-mediated repression of cell wall invertase impairs defense in source leaves of tobacco. Plant Physiol. 147, 1288-1299. https://doi.org/10.1104/pp.108.121418
  25. Eulgem, T., and Somssich, I.E. (2007). Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 10, 366-371. https://doi.org/10.1016/j.pbi.2007.04.020
  26. Felix, G., Duran, J.D., Volko, S., and Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18, 265-276. https://doi.org/10.1046/j.1365-313X.1999.00265.x
  27. Fotopoulos, V., Gilbert, M.J., Pittman, J.K., Marvier, A.C., Buchanan, A.J., Sauer, N., Hall, J.L., and Williams, L.E. (2003). The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atbetafruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol. 132, 821-829. https://doi.org/10.1104/pp.103.021428
  28. Gibon, Y., Blasing, O.E., Palacios-Rojas, N., Pankovic, D., Hendriks, J.H., Fisahn, J., Hohne, M., Gunther, M., and Stitt, M. (2004). Adjustment of diurnal starch turnover to short days: depletion of sugar during the night leads to a temporary inhibition of carbohydrate utilization, accumulation of sugars and posttranslational activation of ADP-glucose pyrophosphorylase in the following light period. Plant J. 39, 847-862. https://doi.org/10.1111/j.1365-313X.2004.02173.x
  29. Han, S., and Kim, D. (2006). AtRTPrimer: database for Arabidopsis genome-wide homogeneous and specific RT-PCR primer-pairs. BMC Bioinformatics. 7, 179. https://doi.org/10.1186/1471-2105-7-179
  30. Herbers, K., Meuwly, P., Frommer, W.B., Metraux, J.P., and Sonnewald, U. (1996). Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8, 793-803. https://doi.org/10.1105/tpc.8.5.793
  31. Jones, J.D.G., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323-329. https://doi.org/10.1038/nature05286
  32. Kiedrowski, S., Kawalleck, P., Hahlbrock, K., Somssich, I.E., and Dangl, J.L. (1992). Rapid activation of a novel plant defense gene is strictly dependent on the Arabidopsis RPM1 disease resistance locus. EMBO J. 11, 4677-4684.
  33. Kim, J.H., Woo, H.R., Kim, J., Lim, P.O., Lee, I.C., Choi, S.H., Hwang, D., and Nam, H.G. (2009). Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323, 1053-1057. https://doi.org/10.1126/science.1166386
  34. Laluk, K., Luo, H., Chai, M., Dhawan, R., Lai, Z., and Mengiste, T. (2011). Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. Plant Cell 23, 2831-2849. https://doi.org/10.1105/tpc.111.087122
  35. Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559. https://doi.org/10.1186/1471-2105-9-559
  36. Lee, S., Seo, P.J., Lee, H.J., and Park, C.M. (2012). A NAC transcription factor NTL4 promotes reactive oxygen species production during drought-induced leaf senescence in Arabidopsis. Plant J. 70, 831-844. https://doi.org/10.1111/j.1365-313X.2012.04932.x
  37. Less, H., Angelovici, R., Tzin, V., and Galili, G. (2011). Coordinated gene networks regulating Arabidopsis plant metabolism in response to various stresses and nutritional cues. Plant Cell 23, 1264-1271. https://doi.org/10.1105/tpc.110.082867
  38. Li, S., Fu, Q., Chen, L., Huang, W., and Yu, D. (2011). Arabidopsis thaliana WRKY25, WRKY26, and WRKY33 coordinate induction of plant thermotolerance. Planta 233, 1237-1252. https://doi.org/10.1007/s00425-011-1375-2
  39. Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L., and He, P. (2010). A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc. Natl. Acad. Sci. USA 107, 496-501. https://doi.org/10.1073/pnas.0909705107
  40. Mauch-Mani, B., and Slusarenko, A.J. (1996). Production of salicylic acid precursors is a major function of phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8, 203-212. https://doi.org/10.1105/tpc.8.2.203
  41. Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H., and Shibuya, N. (2007). CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 104, 19613-19618. https://doi.org/10.1073/pnas.0705147104
  42. Nicaise, V., Roux, M., and Zipfel, C. (2009). Recent advances in PAMP-triggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm. Plant Physiol. 150, 1638-1647. https://doi.org/10.1104/pp.109.139709
  43. Nishimura, M.T., Stein, M., Hou, B.-H., Vogel, J.P., Edwards H., and Somerville S.C. (2003). Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301, 969-972. https://doi.org/10.1126/science.1086716
  44. Oh, S.A., Park, J.H., Lee, G.I., Paek, K.H., Park, S.K., and Nam, H.G. (1997). Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J. 12, 527-535. https://doi.org/10.1046/j.1365-313X.1997.00527.x
  45. Pathuri, I.P., Reitberger, I.E., Huckelhoven, R., and Proels, R.K. (2011). Alcohol dehydrogenase 1 of barley modulates susceptibility to the parasitic fungus Blumeria graminis f.sp. hordei. J. Exp. Bot. 62, 3449-3457. https://doi.org/10.1093/jxb/err017
  46. Pecenkova, T., Hala, M., Kulich, I., Kocourkova, D., Drdova, E., Fendrych, M., Toupalova, H., and Zarsky, V. (2011). The role for the exocyst complex subunits Exo70B2 and Exo70H1 in the plant-pathogen interaction. J. Exp. Bot. 62, 2107-2116. https://doi.org/10.1093/jxb/erq402
  47. Pieterse, C.M., Leon-Reyes, A., Van der Ent, S., and Van Wees, S.C. (2009). Networking by small-molecule hormones in plant immunity. Nature Chem. Biol. 5, 308-316. https://doi.org/10.1038/nchembio.164
  48. Ragel, P., Streb, S., Feil, R., Sahrawy, M., Annunziata, M.G., Lunn, J.E., Zeeman, S., and Merida, A. (2013). Loss of starch granule initiation has a deleterious effect on the growth of Arabidopsis plants due to an accumulation of ADP-glucose. Plant Physiol. 163, 75-85. https://doi.org/10.1104/pp.113.223420
  49. Roldan, I., Wattebled, F., Mercedes Lucas, M., Delvalle, D., Planchot, V., Jimenez, S., Perez, R., Ball, S., D'Hulst, C., and Merida, A. (2007). The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J. 49, 492-504. https://doi.org/10.1111/j.1365-313X.2006.02968.x
  50. Saisho, D., Nambara, E., Naito, S., Tsutsumi, N., Hirai, A., and Nakazono, M. (1997). Characterization of the gene family for alternative oxidase from Arabidopsis thaliana. Plant Mol. Biol. 35, 585-596. https://doi.org/10.1023/A:1005818507743
  51. Scharte, J., SchON, H., and Weis, E. (2005). Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant Cell Environ. 28, 1421-1435. https://doi.org/10.1111/j.1365-3040.2005.01380.x
  52. Segonzac, C., and Zipfel, C. (2011). Activation of plant patternrecognition receptors by bacteria. Curr. Opin. Microbiol. 14, 54-61. https://doi.org/10.1016/j.mib.2010.12.005
  53. Smith, A.M., and Stitt, M. (2007). Coordination of carbon supply and plant growth. Plant, Cell Environ. 30, 1126-1149. https://doi.org/10.1111/j.1365-3040.2007.01708.x
  54. Stitt, M., Gibon, Y., Lunn, J.E., and Piques, M. (2007). Multilevel genomics analysis of carbon signalling during low carbon availability: coordinating the supply and utilisation of carbon in a fluctuating environment. Func. Plant Biol. 34, 526-549. https://doi.org/10.1071/FP06249
  55. Sturm, A., and Chrispeels, M.J. (1990). cDNA cloning of carrot extracellular beta-fructosidase and its expression in response to wounding and bacterial infection. Plant Cell 2, 1107-1119.
  56. Swarbrick, P.J., Schulze-Lefert, P., and Scholes, J.D. (2006). Metabolic consequences of susceptibility and resistance (racespecific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell Environ. 29, 1061-1076. https://doi.org/10.1111/j.1365-3040.2005.01472.x
  57. Tao, Y., Xie, Z., Chen, W., Glazebrook, J., Chang, H.S., Han, B., Zhu, T., Zou, G., and Katagiri, F. (2003). Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15, 317-330. https://doi.org/10.1105/tpc.007591
  58. Tena, G., Boudsocq, M., and Sheen, J. (2011). Protein kinase signaling networks in plant innate immunity. Curr. Opin. Plant Biol. 14, 519-529. https://doi.org/10.1016/j.pbi.2011.05.006
  59. Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, L.A., Rhee, S.Y., and Stitt, M. (2004). MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914-939. https://doi.org/10.1111/j.1365-313X.2004.02016.x
  60. Tsuda, K., Sato, M., Stoddard, T., Glazebrook, J., and Katagiri, F. (2009). Network properties of robust immunity in plants. PLoS Genet. 5, e1000772. https://doi.org/10.1371/journal.pgen.1000772
  61. Wang, H.J., Wan, A.R., Hsu, C.M., Lee, K.W., Yu, S.M., and Jauh, G.Y. (2007). Transcriptomic adaptations in rice suspension cells under sucrose starvation. Plant Mol. Biol. 63, 441-463. https://doi.org/10.1007/s11103-006-9100-4
  62. Wu, Z., and Irizarry, R.A. (2005). Stochastic models inspired by hybridization theory for short oligonucleotide arrays. J. Comput. Biol. 12, 882-893. https://doi.org/10.1089/cmb.2005.12.882
  63. Yang, S.D., Seo, P.J., Yoon, H.K., and Park, C.M. (2011). The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes. Plant Cell 23, 2155-2168. https://doi.org/10.1105/tpc.111.084913
  64. Yu, T.S., Kofler, H., Hausler, R.E., Hille, D., Flugge, U.I., Zeeman, S.C., Smith, A.M., Kossmann, J., Lloyd, J., Ritte, G., et al. (2001). The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter. Plant Cell 13, 1907-1918. https://doi.org/10.1105/tpc.13.8.1907
  65. Zhang, B., and Horvath, S. (2005). A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 4, Article17.
  66. Zheng, Z., Fan, B., and Chen, Z. (2005). Roles of structurally related WRKY 20, WRKY25, WRKY26 and WRKY33 transcription factors in plant defense responses. In 16TH INTERNATIONAL CONFERENCE ON ARABIDOPSIS RESEARCH, (Madison, WI: USA), p.581.
  67. Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764-767. https://doi.org/10.1038/nature02485

피인용 문헌

  1. Increase of Fungal Pathogenicity and Role of Plant Glutamine in Nitrogen-Induced Susceptibility (NIS) To Rice Blast vol.8, 2017, https://doi.org/10.3389/fpls.2017.00265
  2. Tricarboxylates Induce Defense Priming Against Bacteria in Arabidopsis thaliana vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.01221
  3. Differential response of tomato genotypes to Xanthomonas -specific pathogen-associated molecular patterns and correlation with bacterial spot ( Xanthomonas perforans ) resistance vol.3, pp.None, 2016, https://doi.org/10.1038/hortres.2016.35
  4. Activation of Local and Systemic Defence Responses by Flg22 Is Dependent on Daytime and Ethylene in Intact Tomato Plants vol.22, pp.15, 2015, https://doi.org/10.3390/ijms22158354