DOI QR코드

DOI QR Code

EphB/ephrinB Signaling in Cell Adhesion and Migration

  • Park, Inji (ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University) ;
  • Lee, Hyun-Shik (ABRC, CMRI, School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University)
  • Received : 2014.06.12
  • Accepted : 2014.10.17
  • Published : 2015.01.31

Abstract

Eph receptors and their ligands, ephrins, represent the largest group of the receptor tyrosine kinase (RTK) family, and they mediate numerous developmental processes in a variety of organisms. Ephrins are membrane-bound proteins that are mainly divided into two classes: A class ephrins, which are linked to the membrane by a glycosylphosphatidylinositol (GPI) linkage, and B class ephrins, which are transmembrane ligands. Based on their domain structures and affinities for ligand binding, the Eph receptors are also divided into two groups. Trans-dimerization of Eph receptors with their membrane-tethered ligands regulates cell-cell interactions and initiates bidirectional signaling pathways. These pathways are intimately involved in regulating cytoskeleton dynamics, cell migration, and alterations in cellular dynamics and shapes. The EphBs and ephrinBs are specifically localized and modified to promote higher-order clustering and initiate of bidirectional signaling. In this review, we present an in-depth overview of the structure, mechanisms, cell signaling, and functions of EphB/ephrinB in cell adhesion and migration.

Keywords

References

  1. Adams, R. H., Wilkinson, G. A., Weiss, C., Diella, F., Gale, N. W., Deutsch, U., Risau, W. and Klein, R. (1999). Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev. 13, 295-306. https://doi.org/10.1101/gad.13.3.295
  2. Adams, R.H, Diella, F., Hennig, S., Helmbacher, F., Deutsch, U., and Klein, R. (2001). The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration. Cell 104, 57-69. https://doi.org/10.1016/S0092-8674(01)00191-X
  3. Arvanitis, D.N., Behar, A., Tryoen-Toth, P., Bush, J.O., Jungas, T., Vitale, N., and Davy, A. (2013). Ephrin B1 maintains apical adhesion of neural progenitors. Development 140, 2082-2092. https://doi.org/10.1242/dev.088203
  4. Batlle, E., Henderson, J.T., Beghtel, H., van den Born, M.M., Sancho, E., Huls, G., Meeldijk, J., Robertson, J., van de Wetering, M., Pawson, T., et al. (2002). Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111, 251-263. https://doi.org/10.1016/S0092-8674(02)01015-2
  5. Becker, E., Huynh-Do, U., Holland, S., Pawson, T., Daniel, T.O., and Skolnik, E.Y. (2000). Nck-interacting Ste20 kinase couples Eph receptors to c-Jun N-terminal kinase and integrin activation. Mol. Cell. Biol. 20, 1537-1545. https://doi.org/10.1128/MCB.20.5.1537-1545.2000
  6. Bong, Y.S., Park, Y.H., Lee, H.S., Mood, K., Ishimura, A., and Daar, I.O. (2004). Tyr-298 in ephrinB1 is critical for an interaction with the Grb4 adaptor protein. Biochem. J. 377, 499-507. https://doi.org/10.1042/bj20031449
  7. Bong, Y.S., Lee, H.S., Carim-Todd, L., Mood, K., Nishanian, T.G., Tessarollo, L., and Daar, I.O. (2007). ephrinB1 signals from the cell surface to the nucleus by recruitment of STAT3. Proc. Natl. Acad. Sci. USA 104, 17305-17310. https://doi.org/10.1073/pnas.0702337104
  8. Bruckner, K., Pasquale, E.B., and Klein, R. (1997). Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275, 1640-1643. https://doi.org/10.1126/science.275.5306.1640
  9. Bush, J.O., and Soriano, P. (2009). Ephrin-B1 regulates axon guidance by reverse signaling through a PDZ-dependent mechanism. Genes Dev. 23, 1586-1599. https://doi.org/10.1101/gad.1807209
  10. Cho, H.J., Hwang, Y.S., Mood, K., Ji, Y.J., Lim, J., Morrison, D.K., and Daar, I.O. (2014). EphrinB1 Interacts with CNK1 and Promotes Cell Migration through JNK Activation. J. Biol. Chem. 289, 18556-18568. https://doi.org/10.1074/jbc.M114.558809
  11. Chong, L.D., Park, E.K., Latimer, E., Friesel, R., and Daar, I.O. (2000). Fibroblast growth factor receptor-mediated rescue of xephrin B1-induced cell dissociation in Xenopus embryos. Mol. Cell. Biol. 20, 724-734. https://doi.org/10.1128/MCB.20.2.724-734.2000
  12. Cortina, C., Palomo-Ponce, S., Iglesias, M., Fernandez-Masip, J.L., Vivancos, A., Whissell, G., Huma, M., Peiro, N., Gallego, L., Jonkheer, S., et al. (2007). EphB-ephrin-B interactions suppress colorectal cancer progression by compartmentalizing tumor cells. Nat. Genet. 39, 1376-1383. https://doi.org/10.1038/ng.2007.11
  13. Cowan, C.A., and Henkemeyer, M. (2001). The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 413, 174-179. https://doi.org/10.1038/35093123
  14. Daar, I.O. (2012). Non-SH2/PDZ reverse signaling by ephrins. Semin. Cell Dev. Biol. 23, 65-74. https://doi.org/10.1016/j.semcdb.2011.10.012
  15. Davy, A., Aubin, J., and Soriano, P. (2004). Ephrin-B1 forward and reverse signaling are required during mouse development. Genes Dev. 18, 572-583. https://doi.org/10.1101/gad.1171704
  16. Davy, A., Bush, J.O., and Soriano, P. (2006). Inhibition of gap junction communication at ectopic Eph/ephrin boundaries underlies craniofrontonasal syndrome. PLoS Biol. 4, e315. https://doi.org/10.1371/journal.pbio.0040315
  17. Dodelet, V.C., Pazzagli, C., Zisch, A.H., Hauser, C.A., and Pasquale, E.B. (1999). A novel signaling intermediate, SHEP1, directly couples Eph receptors to R-Ras and Rap1A. J. Biol. Chem. 274, 31941-31946. https://doi.org/10.1074/jbc.274.45.31941
  18. Dravis, C., and Henkemeyer, M. (2011). Ephrin-B reverse signaling controls septation events at the embryonic midline through separate tyrosine phosphorylation-independent signaling avenues. Dev. Biol. 355, 138-151. https://doi.org/10.1016/j.ydbio.2011.04.020
  19. Elowe, S., Holland, S.J., Kulkarni, S., and Pawson, T. (2001). Downregulation of the Ras-mitogen-activated protein kinase pathway by the EphB2 receptor tyrosine kinase is required for Ephrin-induced neurite retraction. Mol. Cell. Biol. 21, 7429-7441. https://doi.org/10.1128/MCB.21.21.7429-7441.2001
  20. Georgakopoulos, A., Litterst, C., Ghersi, E., Baki, L., Xu, C., Serban, G., and Robakis, N.K. (2006). Metalloproteinase/Presenilin1 processing of ephrinB regulates EphB-induced Src phosphorylation and signaling. EMBO J. 25, 1242-1252. https://doi.org/10.1038/sj.emboj.7601031
  21. Gerety, S.S., and Anderson, D.J. (2002). Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 129, 1397-1410.
  22. Han, D.C., Shen, T.L., Miao, H., Wang, B., and Guan, J.L. (2002). EphB1 associates with Grb7 and regulates cell migration. J. Biol. Chem. 277, 45655-45661. https://doi.org/10.1074/jbc.M203165200
  23. Hattori, M., Osterfield, M., and Flanagan, J.G. (2000). Regulated cleavage of a contact-mediated axon repellent. Science 289, 1360-1365. https://doi.org/10.1126/science.289.5483.1360
  24. Herbert, S.P., Huisken, J., Kim, T.N., Feldman, M.E., Houseman, B.T., Wang, R.A., Shokat, K.M., and Stainier, D.Y. (2009). Arterial- venous segregation by selective cell sprouting: An alternative mode of blood vessel formation. Science 326, 294-298. https://doi.org/10.1126/science.1178577
  25. Himanen, J.P., Rajashankar, K.R., Lackmann, M., Cowan, C.A., Henkemeyer, M., and Nikolov, D.B. (2001). Crystal structure of an Eph receptor-ephrin complex. Nature 414, 933-938. https://doi.org/10.1038/414933a
  26. Himanen, J.P., Saha N., and Nikolov, D.B. (2007). Cell-cell signaling via Eph receptors and ephrins. Curr. Opin. Cell Biol. 19, 534-542. https://doi.org/10.1016/j.ceb.2007.08.004
  27. Himanen, J P., Yermekbayeva, L., Janes, P.W., Walker, J.R., Xu, K., Atapattu, L., Rajashankar, K.R., Mensinga, A., Lackmann, M., Nikolov, D.B., et al. (2010). Architecture of Eph receptor clusters. Proc. Natl. Acad. Sci. USA 107, 10860-10865. https://doi.org/10.1073/pnas.1004148107
  28. Holland, S.J., Gale, N.W., Mbamalu, G., Yancopoulos, G.D., Henkemeyer, M., and Pawson, T. (1996). Bidirectional signalling through the EPH-family receptor Nuk and its transmembrane ligands. Nature 383, 722-725. https://doi.org/10.1038/383722a0
  29. Hwang, Y.S., Lee, H.S., Kamata, T., Mood, K., Cho, H.J., Winterbottom, E., Ji, Y.J., Singh, A., and Daar, I.O. (2013). The Smurf ubiquitin ligases regulate tissue separation via antagonistic interactions with ephrinB1. Genes Dev. 27, 491-503. https://doi.org/10.1101/gad.208355.112
  30. Huynh-Do, U., Stein, E., Lane, A.A., Liu, H., Cerretti, D.P., and Daniel, T.O. (1999). Surface densities of ephrin-B1 determine EphB1- coupled activation of cell attachment through alphavbeta3 and alpha5beta1 integrins. EMBO J. 18, 2165-2173. https://doi.org/10.1093/emboj/18.8.2165
  31. Janes, P.W., Saha, N., Barton, W.A., Kolev, M.V., Wimmer- Kleikamp, S. H., Nievergall, E., Blobel, C. P., Himanen, J. P., Lackmann, M., and Nikolov, D.B. (2005). Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 123, 291-304. https://doi.org/10.1016/j.cell.2005.08.014
  32. Janes, P.W., Wimmer-Kleikamp, S.H., Frangakis, A.S., Treble, K., Griesshaber, B., Sabet, O., Grabenbauer, M., Ting, A.Y., Saftig, P., Bastiaens, P.I., et al. (2009). Cytoplasmic relaxation of active Eph controls ephrin shedding by ADAM10. PLoS Biol. 7, e1000215. https://doi.org/10.1371/journal.pbio.1000215
  33. Ji, Y.J., Hwang, Y.S., Mood, K., Cho, H.J., Lee, H.S., Winterbottom, E., Cousin, H., and Daar, I.O. (2014). EphrinB2 affects apical constriction in Xenopus embryos and is regulated by ADAM10 and flotillin-1. Nat. Commun. 5, 3516.
  34. Jorgensen, C., Sherman, A., Chen, G.I., Pasculescu, A., Poliakov, A,, Hsiung, M., Larsen, B., Wilkinson, D.G., Linding, R., and Pawson, T. (2009). Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science 326, 1502-1509. https://doi.org/10.1126/science.1176615
  35. Jones, T.L., Chong, L.D., Kim, J., Xu, R.H., Kung, H.F., and Daar, I.O. (1998). Loss of cell adhesion in Xenopus laevis embryos mediated by the cytoplasmic domain of XLerk, an erythropoietinproducing hepatocellular ligand. Proc. Natl. Acad. Sci. USA 95, 576-581. https://doi.org/10.1073/pnas.95.2.576
  36. Kalo, M.S., and Pasquale, E.B. (1999). Signal transfer by eph receptors. Cell Tissue Res. 298, 1-9. https://doi.org/10.1007/PL00008807
  37. Lee, H.S., and Daar, I.O. (2009). EphrinB reverse signaling in cellcell adhesion: is it just par for the course? Cell Adh. Migr. 3, 250-255. https://doi.org/10.4161/cam.3.3.8211
  38. Lee, H.S., Bong, Y.S., Moore, K.B., Soria, K., Moody. S.A., and Daar, I.O. (2006). Dishevelled mediates ephrinB1 signalling in the eye field through the planar cell polarity pathway. Nat. Cell. Biol. 8, 55-63. https://doi.org/10.1038/ncb1344
  39. Lee, H.S., Nishanian, T.G., Mood, K., Bong, Y.S., and Daar, I.O. (2008). EphrinB1 controls cell-cell junctions through the Par polarity complex. Nat. Cell. Biol. 10, 979-986. https://doi.org/10.1038/ncb1758
  40. Lee, H.S., Mood, K., Battu, G., Ji, Y.J., Singh, A., and Daar, I.O. (2009). Fibroblast growth factor receptor-induced phosphorylation of ephrinB1 modulates its interaction with dishevelled. Mol. Biol. Cell. 20, 124-133. https://doi.org/10.1091/mbc.E08-06-0662
  41. Makinen, T., Adams, R.H., Bailey, J., Lu, Q., Ziemiecki, A., Alitalo, K., Klein, R., and Wilkinson, G.A. (2005). PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 19, 397-410. https://doi.org/10.1101/gad.330105
  42. Marston, D.J., Dickinson, S., and Nobes, C.D. (2003). Racdependent transendocytosis of ephrinBs regulates Eph-ephrin contact repulsion. Nat. Cell Biol. 5, 879-888. https://doi.org/10.1038/ncb1044
  43. Margolis, S.S., Salogiannis, J., Lipton, D.M., Mandel-Brehm, C., Wills, Z.P., Mardinly, A.R., Hu, L., Greer, P.L., Bikoff, J.B., Ho, H.Y., et al. (2010). EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation. Cell 143, 442-455. https://doi.org/10.1016/j.cell.2010.09.038
  44. Moore, K.B., Mood, K., Daar, I.O., and Moody, S.A. (2004). Morphogenetic movements underlying eye field formation require interactions between the FGF and ephrinB1 signaling pathways. Dev. Cell 6, 55-67. https://doi.org/10.1016/S1534-5807(03)00395-2
  45. Nagashima, K., Endo, A., Ogita, H., Kawana, A., Yamagishi, A., Kitabatake, A., Matsuda, M., and Mochizuki, N. (2002). Adaptor protein Crk is required for ephrin-B1-induced membrane ruffling and focal complex assembly of human aortic endothelial cells. Mol. Biol. Cell. 13, 4231-4242. https://doi.org/10.1091/mbc.E02-04-0181
  46. Noren, N.K., and Pasquale, E.B. (2007). Paradoxes of the EphB4 receptor in cancer. Cancer Res. 67, 3994-3997. https://doi.org/10.1158/0008-5472.CAN-07-0525
  47. Palmer, A. Zimmer, M., Erdmann, K.S., Eulenburg, V., Porthin, A., Heumann, R., Deutsch, U., and Klein, R. (2002). EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol. Cell 9, 725-737. https://doi.org/10.1016/S1097-2765(02)00488-4
  48. Park, E.C., Cho, G.S., Kim, G.H., Choi, S.C., and Han, J.K. (2011). The involvement of Eph-Ephrin signaling in tissue separation and convergence during Xenopus gastrulation movements. Dev. Biol. 350, 441-450. https://doi.org/10.1016/j.ydbio.2010.12.012
  49. Parker, M., Roberts, R., Enriquez, M., Zhao, X., Takahashi, T., Pat Cerretti, D., Daniel, T., and Chen, J. (2004). Reverse endocytosis of transmembrane ephrin-B ligands via a clathrin-mediated pathway. Biochem. Biophys. Res. Commun. 323, 17-23. https://doi.org/10.1016/j.bbrc.2004.07.209
  50. Pasquale, E.B. (2005). Eph receptor signaling casts a wide net on cell behaviour. Nat. Rev. Mol. Cell Biol. 6, 462-475. https://doi.org/10.1038/nrm1662
  51. Pasquale, E.B. (2008). Eph-ephrin bidirectional signaling in physiology and disease. Cell 133, 38-52. https://doi.org/10.1016/j.cell.2008.03.011
  52. Perez-Moreno, M., and Fuchs, E. (2006). Catenins: keeping cells from getting their signals crossed. Dev. Cell 11, 601-612. https://doi.org/10.1016/j.devcel.2006.10.010
  53. Pitulescu, M.E., and Adams, R.H. (2010). Eph/ephrin molecules-a hub for signaling and endocytosis. Genes Dev. 24, 2480-2492. https://doi.org/10.1101/gad.1973910
  54. Poliakov, A., Cotrina, M., and Wilkinson, D.G. (2005). Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev. Cell 7, 465-480.
  55. Rohani, N., Canty, L., Luu, O., Fagotto, F., and Winklbauer, R. (2011). EphrinB/EphB signaling controls embryonic germ layer separation by contact-induced cell detachment. PLoS Biol. 9, e1000597. https://doi.org/10.1371/journal.pbio.1000597
  56. Sahin, M., Greer, P.L., Lin, M.Z., Poucher, H., Eberhart, J., Schmidt, S., Wright, T.M., Shamah, S.M., O'Connell, S., Cowan, C.W., et al. (2005). Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron 46, 191-204. https://doi.org/10.1016/j.neuron.2005.01.030
  57. Salvucci, O., Maric, D., Economopoulou, M., Sakakibara, S., Merlin, S., Follenzi, A., and Tosato, G. (2009). EphrinB reverse signaling contributes to endothelial and mural cell assembly into vascular structures. Blood 114, 1707-1716. https://doi.org/10.1182/blood-2008-12-192294
  58. Santiago, A., and Erickson, C.A. (2002). Ephrin-B ligands play a dual role in the control of neural crest cell migration. Development 129, 3621-3632.
  59. Seiradake, E., Harlos, K., Sutton, G., Aricescu, A.R., and Jones, E.Y. (2010). An extracellular steric seeding mechanism for Ephephrin signaling platform assembly. Nat. Struct. Mol. Biol. 17, 398-402. https://doi.org/10.1038/nsmb.1782
  60. Senturk, A., Pfennig, S., Weiss, A., Burk, K., and Acker-Palmer, A. (2011). Ephrin Bs are essential components of the Reelin pathway to regulate neuronal migration. Nature 472, 356-360. https://doi.org/10.1038/nature09874
  61. Solanas, G., Cortina, C., Sevillano, M., and Batlle, E. (2011). Cleavage of Ecadherin by ADAM10 mediates epithelial cell sorting downstream of EphB signalling. Nat. Cell Biol. 13, 1100-1107. https://doi.org/10.1038/ncb2298
  62. Stein, E., Lane, A.A., Cerretti, D.P., Schoecklmann, H.O., Schroff, A.D., Van Etten, R.L., and Daniel, T.O. (1998). Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 12, 667-678. https://doi.org/10.1101/gad.12.5.667
  63. Tanaka, M., Kamata, R., and Sakai, R. (2005). Phosphorylation of ephrin-B1 via the interaction with claudin following cell-cell contact formation. EMBO J. 24, 3700-3711. https://doi.org/10.1038/sj.emboj.7600831
  64. Tanaka, M., Sasaki, K., Kamata, R., and Sakai, R. (2007). The Cterminus of ephrin-B1 regulates metalloproteinase secretion and invasion of cancer cells. J. Cell Sci. 120, 2179-2189. https://doi.org/10.1242/jcs.008607
  65. Thelemann, A., Petti, F., Griffin, G., Iwata, K., Hunt, T., Settinari, T., Fenyo, D., Gibson, N., and Haley, J.D. (2005). Phosphotyrosine signaling networks in epidermal growth factor receptor overexpressing squamous carcinoma cells. Mol. Cell Proteomics 4, 356-376. https://doi.org/10.1074/mcp.M400118-MCP200
  66. Torres-Vazquez, J., Kamei, M., and Weinstein, B.M. (2003). Molecular distinction between arteries and veins. Cell Tissue Res. 314, 43-59. https://doi.org/10.1007/s00441-003-0771-8
  67. van de Wetering, M., Sancho, E., Verweij, C., de Lau, W., Oving, I., Hurlstone, A., van der Horn, K., Batlle, E., Coudreuse, D., Haramis, A.P., et al. (2002). The -catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241-250. https://doi.org/10.1016/S0092-8674(02)01014-0
  68. Wang, H.U., Chen, Z.F., and Anderson, D.J. (1998). Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741-753. https://doi.org/10.1016/S0092-8674(00)81436-1
  69. Wang, Y., Nakayama, M., Pitulescu, M.E., Schmidt, T.S., Bochenek, M.L., Sakakibara, A., Adams, S., Davy, A., Deutsch, U., Luthi, U., et al. (2010). Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483-486. https://doi.org/10.1038/nature09002
  70. Wimmer-Kleikamp, S.H., and Lackmann, M. (2005). Ephmodulated cell morphology, adhesion and motility in carcinogenesis. IUBMB Life 57, 421-431. https://doi.org/10.1080/15216540500138337
  71. Winning, R.S., Wyman, T.L., and Walker, G.K. (2001). EphA4 activity causes cell shape change and a loss of cell polarity in Xenopus laevis embryos. Differentiation 68, 126-132. https://doi.org/10.1046/j.1432-0436.2001.680206.x
  72. Xu, N.J., and Henkemeyer, M. (2002). Ephrin reverse signaling in axon guidance and synaptogenesis. Semin. Cell Dev. Biol. 23, 58-64.
  73. Zimmer, M., Palmer, A., Kohler, J., and Klein, R. (2003). EphBephrinB bidirectional endocytosis terminates adhesion allowing contact mediated repulsion. Nat. Cell Biol. 5, 869-878. https://doi.org/10.1038/ncb1045
  74. Zisch, A.H., Pazzagli, C., Freeman, A.L., Schneller, M., Hadman, M., Smith, J.W., Ruoslahti, E., and Pasquale, E.B. (2000). Replacing two conserved tyrosines of the EphB2 receptor with glutamic acid prevents binding of SH2 domains without abrogating kinase activity and biological responses. Oncogene 19, 177-187. https://doi.org/10.1038/sj.onc.1203304

Cited by

  1. Cargo binding promotes KDEL receptor clustering at the mammalian cell surface vol.6, pp.1, 2016, https://doi.org/10.1038/srep28940
  2. Discovery of Novel Antiangiogenic Marine Natural Product Scaffolds vol.14, pp.3, 2016, https://doi.org/10.3390/md14030057
  3. Wnt Signaling in Cell Motility and Invasion: Drawing Parallels between Development and Cancer vol.8, pp.9, 2016, https://doi.org/10.3390/cancers8090080
  4. Transcriptome profiling of the rumen epithelium of beef cattle differing in residual feed intake vol.17, pp.1, 2016, https://doi.org/10.1186/s12864-016-2935-4
  5. In silico analyses and global transcriptional profiling reveal novel putative targets for Pea3 transcription factor related to its function in neurons vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0170585
  6. Collective cell migration: guidance principles and hierarchies vol.25, pp.9, 2015, https://doi.org/10.1016/j.tcb.2015.06.003
  7. Novel Roles and Mechanism for Krüppel-like Factor 16 (KLF16) Regulation of Neurite Outgrowth and Ephrin Receptor A5 (EphA5) Expression in Retinal Ganglion Cells vol.291, pp.35, 2016, https://doi.org/10.1074/jbc.M116.732339
  8. EphrinB2/EphB4 pathway in postnatal angiogenesis: a potential therapeutic target for ischemic cardiovascular disease vol.19, pp.3, 2016, https://doi.org/10.1007/s10456-016-9514-9
  9. An extracellular biochemical screen reveals that FLRTs and Unc5s mediate neuronal subtype recognition in the retina vol.4, 2015, https://doi.org/10.7554/eLife.08149
  10. Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair vol.12, pp.4, 2016, https://doi.org/10.1007/s12015-016-9663-7
  11. Clinical delineation of a subtype of frontonasal dysplasia with creased nasal ridge and upper limb anomalies: Report of six unrelated patients vol.173, pp.12, 2017, https://doi.org/10.1002/ajmg.a.38490
  12. A Novel EphA2 Inhibitor Exerts Beneficial Effects in PI-IBS in Vivo and in Vitro Models via Nrf2 and NF-κB Signaling Pathways vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00272
  13. EphrinB/EphB forward signaling in Müller cells causes apoptosis of retinal ganglion cells by increasing tumor necrosis factor alpha production in rat experimental glaucomatous model vol.6, pp.1, 2018, https://doi.org/10.1186/s40478-018-0618-x
  14. Overlapping Mechanisms of Peripheral Nerve Regeneration and Angiogenesis Following Sciatic Nerve Transection vol.11, pp.None, 2015, https://doi.org/10.3389/fncel.2017.00323
  15. Ubiquitin ligase SPSB4 diminishes cell repulsive responses mediated by EphB2 vol.28, pp.24, 2015, https://doi.org/10.1091/mbc.e17-07-0450
  16. Eph/ephrin signalling serves a bidirectional role in lipopolysaccharide-induced intestinal injury vol.18, pp.2, 2018, https://doi.org/10.3892/mmr.2018.9169
  17. Quantitative Proteomic Analysis of Small and Large Extracellular Vesicles (EVs) Reveals Enrichment of Adhesion Proteins in Small EVs vol.18, pp.3, 2019, https://doi.org/10.1021/acs.jproteome.8b00647
  18. Genome-wide meta-analysis identifies novel loci associated with free triiodothyronine and thyroid-stimulating hormone vol.42, pp.10, 2015, https://doi.org/10.1007/s40618-019-01030-9
  19. A morphogenetic EphB/EphrinB code controls hepatopancreatic duct formation vol.10, pp.1, 2019, https://doi.org/10.1038/s41467-019-13149-7
  20. EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling vol.4, pp.23, 2015, https://doi.org/10.1172/jci.insight.132447
  21. Receptor Tyrosine Kinases in Development: Insights from Drosophila vol.21, pp.1, 2020, https://doi.org/10.3390/ijms21010188
  22. Prognostic analysis of histopathological images using pre-trained convolutional neural networks: application to hepatocellular carcinoma vol.8, pp.None, 2015, https://doi.org/10.7717/peerj.8668
  23. Harnessing the Power of Eph/ephrin Biosemiotics for Theranostic Applications vol.13, pp.6, 2020, https://doi.org/10.3390/ph13060112