DOI QR코드

DOI QR Code

Neuropeptide Regulation of Signaling and Behavior in the BNST

  • Kash, Thomas L. (Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hil) ;
  • Pleil, Kristen E. (Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hil) ;
  • Marcinkiewcz, Catherine A. (Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hil) ;
  • Lowery-Gionta, Emily G. (Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hil) ;
  • Crowley, Nicole (Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hil) ;
  • Mazzone, Christopher (Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hil) ;
  • Sugam, Jonathan (Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hil) ;
  • Hardaway, J. Andrew (Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hil) ;
  • McElligott, Zoe A. (Bowles Center for Alcohol Studies and Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hil)
  • Received : 2014.09.26
  • Accepted : 2014.09.29
  • Published : 2015.01.31

Abstract

Recent technical developments have transformed how neuroscientists can probe brain function. What was once thought to be difficult and perhaps impossible, stimulating a single set of long range inputs among many, is now relatively straight-forward using optogenetic approaches. This has provided an avalanche of data demonstrating causal roles for circuits in a variety of behaviors. However, despite the critical role that neuropeptide signaling plays in the regulation of behavior and physiology of the brain, there have been remarkably few studies demonstrating how peptide release is causally linked to behaviors. This is likely due to both the different time scale by which peptides act on and the modulatory nature of their actions. For example, while glutamate release can effectively transmit information between synapses in milliseconds, peptide release is potentially slower [See the excellent review by Van Den Pol on the time scales and mechanisms of release (van den Pol, 2012)] and it can only tune the existing signals via modulation. And while there have been some studies exploring mechanisms of release, it is still not as clearly known what is required for efficient peptide release. Furthermore, this analysis could be complicated by the fact that there are multiple peptides released, some of which may act in contrast. Despite these limitations, there are a number of groups making progress in this area. The goal of this review is to explore the role of peptide signaling in one specific structure, the bed nucleus of the stria terminalis, that has proven to be a fertile ground for peptide action.

Keywords

References

  1. Adrian, T.E., Allen, J.M., Bloom, S.R., Ghatei, M.A., Rossor, M.N., Roberts, G.W., Crow, T.J., Tatemoto, K., and Polak, J.M. (1983). Neuropeptide Y distribution in human brain. Nature 306, 584-586. https://doi.org/10.1038/306584a0
  2. Allen, Y.S., Adrian, T.E., Allen, J.M., Tatemoto, K., Crow, T.J., Bloom, S.R., and Polak, J.M. (1983). Neuropeptide Y distribution in the rat brain. Science 221, 877-879. https://doi.org/10.1126/science.6136091
  3. Almli, L.M., Mercer, K.B., Kerley, K., Feng, H., Bradley, B., Conneely, K.N., and Ressler, K.J. (2013). ADCYAP1R1 genotype associates with post-traumatic stress symptoms in highly traumatized African-American females. Am. J. Med. Genet. B Neuropsychiatr. Genet. 162B, 262-272.
  4. Aragam, N., Wang, K.S., and Pan, Y. (2011). Genome-wide association analysis of gender differences in major depressive disorder in the Netherlands NESDA and NTR population-based samples. J. Affect Disord. 133, 516-521. https://doi.org/10.1016/j.jad.2011.04.054
  5. Arzt, E., and Holsboer, F. (2006). CRF signaling, molecular specificity for drug targeting in the CNS. Trends Pharmacol. Sci. 27, 531-538. https://doi.org/10.1016/j.tips.2006.08.007
  6. Aston-Jones, G., and Harris, G.C. (2004). Brain substrates for increased drug seeking during protracted withdrawal. Neuropharmacology 46, 167-179.
  7. Beal, M.F., Mazurek, M.F., and Martin, J.B. (1987). A comparison of somatostatin and neuropeptide Y distribution in monkey brain. Brain Res. 405, 213-219. https://doi.org/10.1016/0006-8993(87)90290-3
  8. Beal, M.F., Mazurek, M.F., Ellison, D.W., Swartz, K.J., McGarvey, U., Bird, E.D., and Martin, J.B. (1988). Somatostatin and neuropeptide Y concentrations in pathologically graded cases of Huntington's disease. Ann. Neurol. 23, 562-569. https://doi.org/10.1002/ana.410230606
  9. Betley, J.N., Cao, Z.F., Ritola, K.D., and Sternson, S.M. (2013). Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155, 1337-1350. https://doi.org/10.1016/j.cell.2013.11.002
  10. Binder, E.B., Kinkead, B., Owens, M.J., and Nemeroff, C.B. (2001). Neurotensin and dopamine interactions. Pharmacol. Rev. 53, 453-486.
  11. Blank, T., Nijholt, I., Grammatopoulos, D.K., Randeva, H.S., Hillhouse, E.W., and Spiess, J. (2003). Corticotropin-releasing factor receptors couple to multiple G-proteins to activate diverse intracellular signaling pathways in mouse hippocampus, role in neuronal excitability and associative learning. J. Neurosci. 23.
  12. Boom, A., Mollereau, C., Meunier, J.C., Vassart, G., Parmentier, M., Vanderhaeghen, J.J., and Schiffmann, S.N. (1999). Distribution of the nociceptin and nocistatin precursor transcript in the mouse central nervous system. NSC 91, 991-1007.
  13. Botchkina, G.I., and Morin, L.P. (1995). Organization of permanent and transient neuropeptide Y-immunoreactive neuron groups and fiber systems in the developing hamster diencephalon. J. Comp. Neurol. 357, 573-602. https://doi.org/10.1002/cne.903570408
  14. Browning, J.R., Jansen, H.T., and Sorg, B.A. (2014). Inactivation of the paraventricular thalamus abolishes the expression of cocaine conditioned place preference in rats. Drug Alcohol Depend. 134, 387-390. https://doi.org/10.1016/j.drugalcdep.2013.09.021
  15. Bruchas, M.R., Land, B.B., Lemos, J.C., and Chavkin, C. (2009). CRF1-R activation of the dynorphin/kappa opioid system in the mouse basolateral amygdala mediates anxiety-like behavior. PLoS One 4, e8528. https://doi.org/10.1371/journal.pone.0008528
  16. Bunzow, J.R., Saez, C., Mortrud, M., Bouvier, C., Williams, J.T., Low, M., and Grandy, D.K. (1994). Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a mu, delta or kappa opioid receptor type. FEBS Lett. 347, 284-288. https://doi.org/10.1016/0014-5793(94)00561-3
  17. Burghardt, N.S., and Bauer., E.P. (2013). Acute and chronic effects of selective serotonin reuptake inhibitor treatment on fear conditioning, implications for underlying fear circuits. Neuroscience 247, 253-272. https://doi.org/10.1016/j.neuroscience.2013.05.050
  18. Burroughs, L.F., Fiber, J.M., and Swann, J.M. (1996). Neuropeptide Y in hamster limbic nuclei, lack of colocalization with substance P. Peptides 17, 1053-1062. https://doi.org/10.1016/0196-9781(96)00130-1
  19. Caceda, R., Kinkead, B., and Nemeroff, C.B. (2006). Neurotensin, role in psychiatric and neurological diseases. Peptides 27, 2385-2404. https://doi.org/10.1016/j.peptides.2006.04.024
  20. Calcagnoli, F., de Boer, S.F., Beiderbeck, D.I., Althaus, M., Koolhaas, J.M., and Neumann, I.D. (2014). Local oxytocin expression and oxytocin receptor binding in the male rat brain is associated with aggressiveness. Behav. Brain Res. 261, 315-322. https://doi.org/10.1016/j.bbr.2013.12.050
  21. Carmichael, M.S., Humbert, R., Dixen, J., Palmisano, G., Greenleaf, W., and Davidson, J.M. (1987). Plasma oxytocin increases in the human sexual response. J. Clin. Endocrinol. Metab. 64, 27-31. https://doi.org/10.1210/jcem-64-1-27
  22. Carr, J.A. (2002). Stress, neuropeptides, and feeding behavior, A comparative perspective. Integr. Comp. Biol. 42, 582-590. https://doi.org/10.1093/icb/42.3.582
  23. Carty, M.L., Wixey, J.A., Kesby, J., Reinebrant, H.E., Colditz, P.B., Gobe, G., and Buller, K.M. (2010). Long-term losses of amygdala corticotropin-releasing factor neurons are associated with behavioural outcomes following neonatal hypoxia-ischemia. Behav. Brain Res. 208, 609-618. https://doi.org/10.1016/j.bbr.2010.01.007
  24. Chiba, T., Kayahara, T., and Nakano, K. (2001). Efferent projections of infralimbic and prelimbic areas of the medial prefrontal cortex in the Japanese monkey, Macaca fuscata. Brain Res. 888, 83-101. https://doi.org/10.1016/S0006-8993(00)03013-4
  25. Choi, D.C., Furay, A.R., Evanson, N.K., Ostrander, M.M., Ulrich-Lai, Y.M., and Herman, J.P. (2007). Bed nucleus of the stria terminalis subregions differentially regulate hypothalamic-pituitary-adrenal axis activity, implications for the integration of limbic inputs. J. Neurosci. 27, 2025-2034. https://doi.org/10.1523/JNEUROSCI.4301-06.2007
  26. Chronwall, B.M., DiMaggio, D.A., Massari, V.J., Pickel, V.M., Ruggiero, D.A., and O'Donohue, T.L. (1985). The anatomy of neuropeptide-Y-containing neurons in rat brain. Neuroscience 15, 1159-1181. https://doi.org/10.1016/0306-4522(85)90260-X
  27. Chung, S., Kim, H.J., Kim, H.J., Choi, S.H., Cho, J.H., Cho, Y.H., Kim, D.H., and Shin, K.H. (2014). Desipramine and citalopram attenuate pretest swim-induced increases in prodynorphin immunoreactivity in the dorsal bed nucleus of the stria terminalis and the lateral division of the central nucleus of the amygdala in the forced swimming test. Neuropeptides 48, 273-280. https://doi.org/10.1016/j.npep.2014.07.001
  28. Ciccocioppo, R., Biondini, M., Antonelli, L., Wichmann, J., Jenck, F., and Massi, M. (2002). Reversal of stress- and CRF-induced anorexia in rats by the synthetic nociceptin/orphanin FQ receptor agonist, Ro 64-6198. Psychopharmacology 161, 113-119. https://doi.org/10.1007/s00213-002-1020-7
  29. Ciccocioppo, R., Cippitelli, A., Economidou, D., Fedeli, A., and Massi, M. (2004). Nociceptin/orphanin FQ acts as a functional antagonist of corticotrophin-releasing factor to inhibit its anorectic effect. Physiol. Behav. 82, 63-68. https://doi.org/10.1016/j.physbeh.2004.04.035
  30. Ciccocioppo, R., Fedeli, A., Economidou, D., Policani, F., Weiss, F., and Massi, M. (2003a). The bed nucleus is a neuroanatomical substrate for the anorectic effect of corticotrophin-releasing factor and for its reversal by nociceptin/orphanin FQ. J. Neurosci. 23, 9445-9451.
  31. Ciccocioppo, R., Fedeli, A., Economidou, D., Policani, F., Weiss, F., and Massi, M. (2003b). The bed nucleus is a neuroanatomical substrate for the anorectic effect of corticotropin-releasing factor and for its reversal by nociceptin/orphanin FQ. J. Neurosci. 23, 9445-9451.
  32. Cippitelli, A., Damadzic, R., Hansson, A.C., Singley, E., Sommer, W.H., Eskay, R., Thorsell, A., and Heilig, M. (2010). Neuropeptide Y (NPY) suppresses yohimbine-induced reinstatement of alcohol seeking. Psychopharmacology 208, 417-426. https://doi.org/10.1007/s00213-009-1741-y
  33. Cummings, S., Elde, R., Ells, J., and Lindall, A. (1983). Corticotropinreleasing factor immunoreactivity is widely distributed within the central nervous system of the rat, an immunohistochemical study. J. Neurosci. 3, 1355-1368.
  34. D'Este, L., Casini, A., Pontieri, F.E., and Renda, T.G. (2006). Changes in neuropeptide FF and NPY immunohistochemical patterns in rat brain under heroin treatment. Brain Res. 1083, 151-158. https://doi.org/10.1016/j.brainres.2006.02.009
  35. Dabrowska, J., Hazra, R., Guo, J.D., DeWitt, S., and Rainnie, D.G. (2013). Central CRF neurons are not created equal, phenotypic differences in CRF-containing neurons of the rat paraventricular hypothalamus and the bed nucleus of the stria terminalis. Front Neurosci. 7, 1-14.
  36. Dale, H.H. (1906). On some physiological actions of ergot. J. Physiol. 34, 163-206. https://doi.org/10.1113/jphysiol.1906.sp001148
  37. Dautenberg, F.M., and Hauger, R.L. (2002). The CRF peptide family and their receptors, yet more partners discovered. Trends Pharmacol. Sci. 23, 71-77. https://doi.org/10.1016/S0165-6147(02)01946-6
  38. Davis, M., and Shi, C. (1999). The extended amygdala, are the central nucleus of the amygdala and the bed nucleus of the stria terminalis differentially involved in fear versus anxiety? Ann. N Y Acad. Sci. 877, 281-291. https://doi.org/10.1111/j.1749-6632.1999.tb09273.x
  39. Davis, M., and Walker, D.L. (2013). Role of bed nucleus of the stria terminalis and amygdala AMPA receptors in the development and expression of context conditioning and sensitization of startle by prior shock. Brain Struct. Funct. [Epub ahead of print].
  40. Davis, M., Walker, D.L., and Lee, Y. (1997a). Amygdala and bed nucleus of the stria terminalis, differential roles in fear and anxiety measured with the acoustic startle reflex. Philos. Trans. R Soc. Lond. B Biol. Sci. 352, 1675-1687. https://doi.org/10.1098/rstb.1997.0149
  41. Davis, M., Walker, D.L., and Lee, Y. (1997b). Roles of the amygdala and bed nucleus of the stria terminalis in fear and anxiety measured with the acoustic startle reflex. Possible relevance to PTSD. Ann. N Y Acad. Sci. 821, 305-331. https://doi.org/10.1111/j.1749-6632.1997.tb48289.x
  42. Dawe, K.L., Wakerley, J.B., and Fulford, A.J. (2010). Nociceptin/ orphanin FQ and the regulation of neuronal excitability in the rat bed nucleus of the stria terminalis, Interaction with glucocorticoids. Stress 13, 516-527. https://doi.org/10.3109/10253890.2010.491134
  43. de Campo, D.M., and Fudge, J.L. (2013). Amygdala projections to the lateral bed nucleus of the stria terminalis in the macaque, comparison with ventral striatal afferents. J. Comp. Neurol. 521, 3191-3216. https://doi.org/10.1002/cne.23340
  44. Desai, S.J., Upadhya, M.A., Subhedar, N.K., and Kokare, D.M. (2013). NPY mediates reward activity of morphine, via NPY Y1 receptors, in the nucleus accumbens shell. Behav. Brain Res. 247, 79-91.
  45. Desai, S.J., Borkar, C.D., Nakhate, K.T., Subhedar. N.K., and Kokare, D.M. (2014). Neuropeptide Y attenuates anxiety- and depressionlike effects of cholecystokinin-4 in mice. Neuroscience 277C, 818-830.
  46. Dong, H.W., Petrovich, G.D., and Swanson, L.W. (2001a). Topography of projections from amygdala to bed nuclei of the stria terminalis. Brain Res.earch. Brain Res. Rev. 38, 192-246. https://doi.org/10.1016/S0165-0173(01)00079-0
  47. Dong, H.W., Petrovich, G.D., Watts, A.G., and Swanson, L.W. (2001b). Basic organization of projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis in adult rat brain. J. Comp. Neurol. 436, 430-455. https://doi.org/10.1002/cne.1079
  48. Dore, R., Iemolo, A., Smith, K.L., Wang, X., Cottone, P., and Sabino, V. (2013). CRF mediates the anxiogenic and anti-rewarding, but not the anorectic effects of PACAP. Neuropsychopharmacology 38, 2160-2169. https://doi.org/10.1038/npp.2013.113
  49. du Vigneaud, V., Ressler, C., and Trippett, S. (1953). THE SEQUENCE OF AMINO ACIDS IN OXYTOCIN, WITH A PROPOSAL FOR THE STRUCTURE OF OXYTOCIN. J. Biol. Chem. 205, 949-957.
  50. Dumont, Y., Fournier, A., St-Pierre, S., and Quirion, R. (1996). Autoradiographic distribution of [125I]Leu31,Pro34]PYY and [125I]PYY3-36 binding sites in the rat brain evaluated with two newly developed Y1 and Y2 receptor radioligands. Synapse 22, 139-158. https://doi.org/10.1002/(SICI)1098-2396(199602)22:2<139::AID-SYN7>3.0.CO;2-E
  51. Duvarci, S., Bauer, E.P., and Pare, D. (2009). The bed nucleus of the stria terminalis mediates inter-individual variations in anxiety and fear. J. Neurosci. 29, 10357-10361. https://doi.org/10.1523/JNEUROSCI.2119-09.2009
  52. Eiler, W.J., 2nd, Seyoum, R., Foster, K.L., Mailey, C., and June, H.L. (2003). D1 dopamine receptor regulates alcohol-motivated behaviors in the bed nucleus of the stria terminalis in alcoholpreferring (P) rats. Synapse 48, 45-56. https://doi.org/10.1002/syn.10181
  53. Elharrar, E., Warhaftig, G., Issler, O., Sztainberg, Y., Dikshtein, Y., Zahut, R., Redlus, L., Chen, A., and Yadid, G. (2013). Overexpression of corticotropin-releasing factor receptor type 2 in the bed nucleus of stria terminalis improves posttraumatic stress disorder-like symptoms in a model of incubation of fear. Biol. Psychiat. 74, 827-836. https://doi.org/10.1016/j.biopsych.2013.05.039
  54. Epping-Jordan, M.P., Markou, A., and Koob, G.F. (1998). The dopamine D-1 receptor antagonist SCH 23390 injected into the dorsolateral bed nucleus of the stria terminalis decreased cocaine reinforcement in the rat. Brain Res. 784, 105-115. https://doi.org/10.1016/S0006-8993(97)01190-6
  55. Erb, S. (2010). Evaluation of the relationship between anxiety during withdrawal and stress-induced reinstatement of cocaine seeking. Progr. Neuro-psychoph. 34, 798-807. https://doi.org/10.1016/j.pnpbp.2009.11.025
  56. Erb, S., and Stewart, J. (1999). A role for the bed nucleus of the stria terminalis, but not the amygdala, in the effects of corticotrophin-releasing factor on stress-induced reinstatement of cocaine seeking. J. Neurosci. 19, RC35.
  57. Erb, S., Salmaso, N., Rodaros, D., and Stewart, J. (2001). A role for the CRF-containing pathway from central nucleus of the amygdala to bed nucleus of the stria terminalis in the stressinduced reinstatement of cocaine seeking in rats. Psychopharmacology 158, 360-365. https://doi.org/10.1007/s002130000642
  58. Fallon, J.H., and Leslie, F.M. (1986). Distribution of dynorphin and enkephalin peptides in the rat brain. J. Comp. Neurol. 249, 293-336. https://doi.org/10.1002/cne.902490302
  59. Flavin, S.A., and Winder, D.G. (2013). Noradrenergic control of the bed nucleus of the stria terminalis in stress and reward. Neuropharmacology 70, 324-330. https://doi.org/10.1016/j.neuropharm.2013.02.013
  60. Francesconi, W., Berton, F., Repunte-Canonigo, V., Hagihara, K., Thurbon, D., Lekic, D., Specio, S.E., Greenwell, T.N., Chen, S.A., Rice, K.C., et al. (2009). Protracted withdrawal from alcohol and drugs of abuse impairs long-term potentiation of intrinsic excitability in the juxtacapsular bed nucleus of the stria terminalis. J. Neurosci. 29, 5389-5401. https://doi.org/10.1523/JNEUROSCI.5129-08.2009
  61. Fu, Y., and Neugebauer, V. (2008). Differential mechanisms of CRF1 and CRF2 receptor functions in the amygdala in painrelated synaptic facilitation and behavior. J. Neurosci. 28, 3861-3876. https://doi.org/10.1523/JNEUROSCI.0227-08.2008
  62. Funk, C.K., O'Dell, L.E., Crawford, E.F., and Koob, G.F. (2006a). Corticotropin-releasing factor within the central nucleus of the amygdala mediates enhanced ethanol self-administration in withdrawn, ethanol-dependent rat. J. Neurosci. 26, 11324-11332. https://doi.org/10.1523/JNEUROSCI.3096-06.2006
  63. Funk, D., Li, Z., and Le, A.D. (2006b). Effects of environmental and pharmacological stressors on c-fos and corticotropin-releasing factor mRNA in rat brain, Relationship to the reinstatement of alcohol seeking. Neuroscience 138, 235-243. https://doi.org/10.1016/j.neuroscience.2005.10.062
  64. Gafford, G.M., Guo, J.D., Flandreau, E.I., Hazra, R., Rainnie, D.G., and Ressler, K.J. (2012). Cell-type specific deletion of GABA(A)1 in corticotrophin-releasing factor-containing neurons enhances anxiety and disrupts fear extinction. Proc. Natl. Acad. Sci. USA 109, 16330-16335. https://doi.org/10.1073/pnas.1119261109
  65. Garcia-Carmona, J.A., Milanes, M.V., and Laorden, M.L. (2013). Brain stress system response after morphine-conditioned place preference. Int. J. Neuropsychopharmacol. 16, 1999-2011. https://doi.org/10.1017/S1461145713000588
  66. Gaspar, P., Berger, B., Lesur, A., Borsotti, J.P., and Febvret, A. (1987). Somatostatin 28 and neuropeptide Y innervation in the septal area and related cortical and subcortical structures of the human brain. Distribution, relationships and evidence for differential coexistence. Neuroscience 22, 49-73. https://doi.org/10.1016/0306-4522(87)90197-7
  67. Gass, J.T., Trantham-Davidson, H., Kassab, A.S., Glen, W.B., Jr., Olive, M.F., and Chandler, L.J. (2014). Enhancement of extinction learning attenuates ethanol-seeking behavior and alters plasticity in the prefrontal cortex. J. Neurosci. 34, 7562-7574. https://doi.org/10.1523/JNEUROSCI.5616-12.2014
  68. Gaszner, B., Kormos, V., Kozicz, T., Hashimoto, H., Reglodi, D., and Helyes, Z. (2012). The behavioral phenotype of pituitary adenylate-cyclase activating polypeptide-deficient mice in anxiety and depression tests is accompanied by blunted c-Fos expression in the bed nucleus of the stria terminalis, central projecting Edinger-Westphal nucleus, ventral lateral septum, and dorsal raphe nucleus. Neuroscience 202, 283-299. https://doi.org/10.1016/j.neuroscience.2011.11.046
  69. Gavioli, E.C., Rizzi, A., Marzola, G., Zucchini, S., Regoli, D., and Calo, G. (2007). Altered anxiety-related behavior in nociceptin/ orphanin FQ receptor gene knockout mice. Peptides 28, 1229-1239. https://doi.org/10.1016/j.peptides.2007.04.012
  70. Gewirtz, J.C., McNish, K.A., and Davis, M. (1998). Lesions of the bed nucleus of the stria terminalis block sensitization of the acoustic startle reflex produced by repeated stress, but not fearpotentiated startle. Prog. Neuropsychopharmacol. Biol. Psychiatry 22, 625-648.
  71. Gimpl, G., and Fahrenholz, F. (2001). The oxytocin receptor system: structure, function, and regulation. Physiol. Rev. 81, 629-683. https://doi.org/10.1152/physrev.2001.81.2.629
  72. Girard, B.A., Lelievre, V., Braas, K.M., Razinia, T., Vizzard, M.A., Ioffe, Y., El Meskini, R., Ronnett, G.V., Waschek, J.A., and May, V. (2006). Noncompensation in peptide/receptor gene expression and distinct behavioral phenotypes in VIP- and PACAP-deficient mice. J. Neurochem. 99, 499-513. https://doi.org/10.1111/j.1471-4159.2006.04112.x
  73. Gray, T.S., and Magnuson, D.J. (1992). Peptide immunoreactive neurons in the amygdala and the bed nucleus of the stria terminalis project to the midbrain central gray in the rat. Peptides 13, 451-460. https://doi.org/10.1016/0196-9781(92)90074-D
  74. Guo, J.D., Hammack, S.E., Hazra, R., Levita, L., and Rainnie, D.G. (2009). Bi-directional modulation of bed nucleus of stria terminalis neurons by 5-HT, molecular expression and functional properties of excitatory 5-HT receptor subtypes. Neuroscience 164, 1776-1793. https://doi.org/10.1016/j.neuroscience.2009.09.028
  75. Hammack, S.E., Cheung, J., Rhodes, K.M., Schutz, K.C., Falls, W.A., Braas, K.M., and May, V. (2009). Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST), roles for PACAP in anxiety-like behavior. Psychoneuroendocrinology 34, 833-843. https://doi.org/10.1016/j.psyneuen.2008.12.013
  76. Hammack, S.E., Cooper, M.A., and Lezak, K.R. (2012). Overlapping neurobiology of learned helplessness and conditioned defeat, implications for PTSD and mood disorders. Neuropharmacology 62, 565-575. https://doi.org/10.1016/j.neuropharm.2011.02.024
  77. Harmar, A.J., Arimura, A., Gozes, I., Journot, L., Laburthe, M., Pisegna, J.R., Rawlings, S.R., Robberecht, P., Said, S.I., Sreedharan, S.P., et al. (1998). International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol. Rev. 50, 265-270.
  78. Hashimoto, H., Nogi, H., Mori, K., Ohishi, H., Shigemoto, R., Yamamoto, K., Matsuda, T., Mizuno, N., Nagata, S., and Baba, A. (1996). Distribution of the mRNA for a pituitary adenylate cyclase-activating polypeptide receptor in the rat brain, an in situ hybridization study. J. Comp. Neurol. 371, 567-577. https://doi.org/10.1002/(SICI)1096-9861(19960805)371:4<567::AID-CNE6>3.0.CO;2-2
  79. Hashimoto, H., Shintani, N., Tanaka, K., Mori, W., Hirose, M., Matsuda, T., Sakaue, M., Miyazaki, J., Niwa, H., Tashiro, F., et al. (2001). Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc. Natl. Acad. Sci. USA 98, 13355-13360. https://doi.org/10.1073/pnas.231094498
  80. Hashimoto, R., Hashimoto, H., Shintani, N., Chiba, S., Hattori, S., Okada, T., Nakajima, M., Tanaka, K., Kawagishi, N., Nemoto, K., et al. (2007). Pituitary adenylate cyclase-activating polypeptide is associated with schizophrenia. Mol. Psychiatr. 12, 1026-1032. https://doi.org/10.1038/sj.mp.4001982
  81. Hasue, R.H., and Shammah-Lagnado, S.J. (2002). Origin of dopaminergic innervations of the central extended amygdala and accumbens shell, a combined retrograde tracing and immunohistochemical study in the rat. J. Comp. Neurol. 454, 15-33. https://doi.org/10.1002/cne.10420
  82. Hattori, S., Takao, K., Tanda, K., Toyama, K., Shintani, N., Baba, A., Hashimoto, H., and Miyakawa, T. (2012). Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice. Front Behav. Neurosci. 6, 58.
  83. Hawley, D.F., Bardi, M., Everette, A.M., Higgins, T.J., Tu, K.M., Kinsley, C.H., and Lambert, K.G. (2010). Neurobiological constituents of active, passive, and variable coping strategies in rats, integration of regional brain neuropeptide Y levels and cardiovascular responses. Stress 13, 172-183. https://doi.org/10.3109/10253890903144621
  84. Heilig, M. (2004). The NPY system in stress, anxiety and depression. Neuropeptides 38, 213-224. https://doi.org/10.1016/j.npep.2004.05.002
  85. Heilig, M., and Thorsell, A. (2002). Brain neuropeptide Y (NPY) in stress and alcohol dependence. Rev. Neurosci. 13, 85-94.
  86. Heilig, M., Koob, G.F., Ekman, R., and Britton, K.T. (1994). Corticotropin-releasing factor and neuropeptide Y, role in emotional integration. Trends Neurosci. 17, 80-85. https://doi.org/10.1016/0166-2236(94)90079-5
  87. Heisler, L.K., Zhou, L., Bajwa, P., Hsu, J., and Tecott, L.H. (2007). Serotonin 5-HT(2C) receptors regulate anxiety-like behavior. Genes Brain Behav. 6, 491-496. https://doi.org/10.1111/j.1601-183X.2007.00316.x
  88. Herr, N.R., Park, J., McElligott, Z.A., Belle, A.M., Carelli, R.M., and Wightman, R.M. (2012). In vivo voltammetry monitoring of electrically evoked extracellular norepinephrine in subregions of the bed nucleus of the stria terminalis. J. Neurophysiol. 107, 1731-1737. https://doi.org/10.1152/jn.00620.2011
  89. Heydendael, W., Sharma, K., Iyer, V., Luz, S., Piel, D., Beck, S., and Bhatnagar, S. (2011). Orexins/hypocretins act in the posterior paraventricular thalamic nucleus during repeated stress to regulate facilitation to novel stress. Endocrinology 152, 4738-4752. https://doi.org/10.1210/en.2011-1652
  90. Hollis, F., Duclot, F., Gunjan, A., and Kabbaj, M. (2011). Individual differences in the effect of social defeat on anhedonia and histone acetylation in the rat hippocampus. Horm. Behav. 59, 331-337. https://doi.org/10.1016/j.yhbeh.2010.09.005
  91. Hooker, J.M., Patel, V., Kothari, S., Schiffer, W.K. (2009). Metabolic changes in the rodent brain after acute administration of salvinorin A. Mol. Imaging Biol. 11, 137-143. https://doi.org/10.1007/s11307-008-0192-x
  92. Huang, M.M., Overstreet, D.H., Knapp, D.J., Angel, R., Wills, T.A., Navarro, M., Rivier, J., Vale, W., Breese, G.R. (2010). Corticotropin-Releasing Factor (CRF) sensitization of ethanol withdrawal-induced anxiety-like behavior is brain site specific and mediated by CRF-1 receptors, Relation to stress-induced sensitization. J. Pharmacol. Exp. Ther. 332, 298-307. https://doi.org/10.1124/jpet.109.159186
  93. Hurley, K.M., Herbert, H., Moga, M.M., and Saper, C.B. (1991). Efferent projections of the infralimbic cortex of the rat. J. Comp. Neurol. 308, 249-276. https://doi.org/10.1002/cne.903080210
  94. Ide, S., Hara, T., Ohno, A., Tamano, R., Koseki, K., Naka, T., Maruyama, C., Kaneda, K., Yoshioka, M., and Minami, M. (2013). Opposing roles of corticotropin-releasing factor and neuropeptide Y within the dorsolateral bed nucleus of the stria terminalis in the negative affective component of pain in rats. J. Neurosci. 33, 5881-5894. https://doi.org/10.1523/JNEUROSCI.4278-12.2013
  95. Ikeda, K., Watanabe, M., Ichikawa, T., Kobayashi, T., Yano, R., and Kumanishi, T. (1998). Distribution of prepro-nociceptin/orphanin FQ mRNA and its receptor mRNA in developing and adult mouse central nervous systems. J. Comp. Neurol. 399, 139-151. https://doi.org/10.1002/(SICI)1096-9861(19980914)399:1<139::AID-CNE11>3.0.CO;2-C
  96. Ingram, C.D., and Moos, F. (1992). Oxytocin-containing pathway to the bed nuclei of the stria terminalis of the lactating rat brain, Immunocytochemical and in vitro electrophysiological evidence. Neuroscience 47, 439-452. https://doi.org/10.1016/0306-4522(92)90258-4
  97. Ingram, C.D., Cutler, K.L., and Wakerley, J.B. (1990). Oxytocin excites neurones in the bed nucleus of the stria terminalis of the lactating rat in vitro. Brain Res. 527, 167-170. https://doi.org/10.1016/0006-8993(90)91078-U
  98. Insel, T.R. (1992). Oxytocin--a neuropeptide for affiliation, evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology 17, 3-35. https://doi.org/10.1016/0306-4530(92)90073-G
  99. Insel, T.R., and Shapiro, L.E. (1992). Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc. Natl. Acad. Sci. USA 89, 5981-5985. https://doi.org/10.1073/pnas.89.13.5981
  100. Ishihara, T., and Shigemoto, R., Mori, K., Takahashi, K., Nagata, S. (1992). Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 8, 811-819. https://doi.org/10.1016/0896-6273(92)90101-I
  101. Jaworski, D.M., and Proctor, M.D. (2000). Developmental regulation of pituitary adenylate cyclase-activating polypeptide and PAC(1) receptor mRNA expression in the rat central nervous system. Brain Res. Dev. Brain Res. 120, 27-39. https://doi.org/10.1016/S0165-3806(99)00192-3
  102. Jennings, J.H., Sparta, D.R., Stamatakis, A.M., Ung, R.L., Pleil, K.E., Kash, T.L., and Stuber, G.D. (2013a). Distinct extended amygdala circuits for divergent motivational states. Nature 496, 224-228. https://doi.org/10.1038/nature12041
  103. Jennings, J.H., Sparta, D.R., Stamatakis, A.M., Ung, R.L., and Stuber, G.D. (2013b). The inhibitory circuit architecture of the lateral hypothalamus orchestrates feeding. Science 341, 1517-1521. https://doi.org/10.1126/science.1241812
  104. Kalamatianos, T., Faulkes, C.G., Oosthuizen, M.K., Poorun, R., Bennett, N.C., and Coen, C.W. (2010). Telencephalic binding sites for oxytocin and social organization, A comparative study of eusocial naked mole-rats and solitary cape mole-rats. J. Comp. Neurol. 518, 1792-1813. https://doi.org/10.1002/cne.22302
  105. Kash, T.L., and Winder, D.G. (2006). Neuropeptide Y and corticotropin-releasing factor bi-directionally modulate inhibitory synaptic transmission in the bed nucleus of the stria terminalis. Neuropharmacology 51, 1013-22. https://doi.org/10.1016/j.neuropharm.2006.06.011
  106. Kash, T.L., Baucum, A.J., 2nd, Conrad K.L., Colbran, R.J., and Winder, D.G. (2009). Alcohol exposure alters NMDAR function in the bed nucleus of the stria terminalis. Neuropsychopharmacology 34, 2420-2429. https://doi.org/10.1038/npp.2009.69
  107. Kempadoo, K.A., Tourino, C., Cho, S.L., Magnani, F., Leinninger, G.M., Stuber, G.D., Zhang, F., Myers, M.G., Deisseroth, K., de Lecea, L., et al. (2013). Hypothalamic neurotensin projections promote reward by enhancing glutamate transmission in the VTA. J. Neuroscience 33, 7618-7626. https://doi.org/10.1523/JNEUROSCI.2588-12.2013
  108. Kendrick, K.M., Keverne, E.B., Hinton, M.R., and Goode, J.A. (1992). Oxytocin, amino acid and monoamine release in the region of the medial preoptic area and bed nucleus of the stria terminalis of the sheep during parturition and suckling. Brain Res. 569, 199-209. https://doi.org/10.1016/0006-8993(92)90631-I
  109. Kim, S.Y., Adhikari, A., Lee, S.Y., Marshel, J.H., Kim, C.K., Mallory, C.S., Lo, M., Pak, S., Mattis, J., Lim, B.K., et al. (2013). Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature 496, 219-223. https://doi.org/10.1038/nature12018
  110. Kimura, C., Ohkubo, S., Ogi, K., Hosoya, M., Itoh, Y., Onda, H., Miyata, A., Jiang, L., Dahl, R.R., Stibbs, H.H., et al. (1990). A novel peptide which stimulates adenylate cyclase: molecular cloning and characterization of the ovine and human cDNAs. Biochem. Biophys. Res. Commun. 166, 81-89. https://doi.org/10.1016/0006-291X(90)91914-E
  111. Kinsey, S.G., Bailey, M.T., Sheridan, J.F., Padgett, D.A., and Avitsur, R. (2007). Repeated social defeat causes increased anxiety-like behavior and alters splenocyte function in C57BL/6 and CD-1 mice. Brain Behav. Immun. 21, 458-466. https://doi.org/10.1016/j.bbi.2006.11.001
  112. Kocho-Schellenberg, M., Lezak, K.R., Harris, O.M., Roelke, E., Gick, N., Choi, I., Edwards, S., Wasserman, E., Toufexis, D.J., Braas, K.M., et al. (2014). PACAP in the BNST produces anorexia and weight loss in male and female rats. Neuropsychopharmacology 39, 1614-1623. https://doi.org/10.1038/npp.2014.8
  113. Koob, G.F. (2003). Alcoholism, allostasis and beyond. Alcohol. Clin. Exp. Res. 27, 232-243. https://doi.org/10.1097/01.ALC.0000057122.36127.C2
  114. Koob, G.F. (2013). Addiction is a Reward Deficit and Stress Surfeit Disorder. Front Psychiatry 4, 72.
  115. Koob, G.F., and Le Moal, M. (2008). Review. Neurobiological mechanisms for opponent motivational processes in addiction. Philos. Trans. R Soc. Lond. B Biol. Sci. 363, 3113-3123. https://doi.org/10.1098/rstb.2008.0094
  116. Koster, A., Montkowski, A., Schulz, S., Stube, E.M., Knaudt, K., Jenck, F., Moreau, J.L., Nothacker, H.P., Civelli, O., and Reinscheid, R.K. (1999). Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proc. Natl. Acad. Sci. USA 96, 10444-10449. https://doi.org/10.1073/pnas.96.18.10444
  117. Kotagale, N.R., Walke, S., Shelkar, G.P., Kokare, D.M., Umekar, M.J., and Taksande, B.G. (2014). Agmatine attenuates nicotine induced conditioned place preference in mice through modulation of neuropeptide Y system. Behav. Brain Res. 262, 118-124. https://doi.org/10.1016/j.bbr.2014.01.004
  118. Kozicz, T., Vigh, S., and Arimura, A. (1997). Axon terminals containing PACAP- and VIP-immunoreactivity form synapses with CRF-immunoreactive neurons in the dorsolateral division of the bed nucleus of the stria terminalis in the rat. Brain Res. 767, 109-119. https://doi.org/10.1016/S0006-8993(97)00737-3
  119. Kozicz, T., Vigh, S., and Arimura, A. (1998). The source of origin of PACAP- and VIP-immunoreactive fibers in the laterodorsal division of the bed nucleus of the stria terminalis in the rat. Brain Res. 810, 211-219. https://doi.org/10.1016/S0006-8993(98)00692-1
  120. Krawczyk, M., Mason, X., DeBacker, J., Sharma, R., Normandeau, C.P., Hawken, E.R., Di Prospero, C., Chiang, C., Martinez, A., Jones, A.A., et al. (2013). D1 dopamine receptor-mediated LTP at GABA synapses encodes motivation to self-administer cocaine in rats. J. Neurosci. 33, 11960-11971. https://doi.org/10.1523/JNEUROSCI.1784-13.2013
  121. Kuenzel, W.J., and McMurtry, J. (1988). Neuropeptide Y, brain localization and central effects on plasma insulin levels in chicks. Physiol. Behav. 44, 669-678. https://doi.org/10.1016/0031-9384(88)90334-4
  122. Lebow, M., Neufeld-Cohen, A., Kuperman, Y., Tsoory, M., Gil, S., and Chen, A. (2012). Susceptibility to PTSD-like behavior is mediated by corticotropin-releasing factor receptor type 2 levels in the bed nucleus of the stria terminalis. J. Neurosci. 32, 6906-6916. https://doi.org/10.1523/JNEUROSCI.4012-11.2012
  123. Lee, Y., Fitz, S., Johnson, P.L., and Shekhar, A. (2008). Repeated stimulation of CRF receptors in the BNST of rats selectively induces social but not panic-like anxiety. Neuropsychopharmacology 33, 2586-2594. https://doi.org/10.1038/sj.npp.1301674
  124. Lee, H.J., Macbeth, A.H., Pagani, J.H., and Young, W.S., 3rd. (2009). Oxytocin, the great facilitator of life. Prog. Neurobiol. 88, 127-151.
  125. Leinninger, G.M., Opland, D.M., Jo, Y.H., Faouzi, M., Christensen, L., Cappellucci, L.A., Rhodes, C.J., Gnegy, M.E., Becker, J.B., Pothos, E.N., et al. (2011). Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metabol. 14, 313-323. https://doi.org/10.1016/j.cmet.2011.06.016
  126. Leventhal, L., Mathis, J.P., Rossi, G.C., Pasternak, G.W., and Bodnar, R.J. (1998). Orphan opioid receptor antisense probes block orphanin FQ-induced hyperphagia. Eur. J. Pharmacol. 349, R1-3 https://doi.org/10.1016/S0014-2999(98)00272-6
  127. Lezak, K.R., Roelke, E., Harris, O.M., Choi, I., Edwards, S., Gick, N., Cocchiaro, G., Missig, G., Roman, C.W., Braas, K.M., et al. (2014a). Pituitary adenylate cyclase-activating polypeptide (PACAP) in the bed nucleus of the stria terminalis (BNST) increases corticosterone in male and female rats. Psychoneuroendocrinology 45, 11-20. https://doi.org/10.1016/j.psyneuen.2014.03.007
  128. Lezak, K.R., Roman, C.W., Braas, K.M., Schutz, K.C., Falls, W.A., Schulkin, J., May, V., and Hammack, S.E. (2014b). Regulation of bed nucleus of the stria terminalis PACAP expression by stress and corticosterone. J. Mol. Neurosci. 54, 477-484.. https://doi.org/10.1007/s12031-014-0269-8
  129. Li, C., Pleil, K.E., Stamatakis, A.M., Busan, S., Vong, L., Lowell, B.B., Stuber, G.D., and Kash, T.L. (2012). Presynaptic inhibition of gamma-aminobutyric acid release in the bed nucleus of the stria terminalis by kappa opioid receptor signaling. Biol. Psychiatry 71, 725-732. https://doi.org/10.1016/j.biopsych.2011.11.015
  130. Li, Y., Dong, X., Li, S., and Kirouac, G.J. (2014). Lesions of the posterior paraventricular nucleus of the thalamus attenuate fear expression. Front. Behav. Neurosci. 8, 94.
  131. Liang, K.C., Chen, H.C., and Chen, D.Y. (2001). Posttraining infusion of norepinephrine and corticotrophin releasing factor into the bed nucleus of the stria terminalis enhanced retention in an inhibitory avoidance task. Chin. J. Physiol. 44, 33-43.
  132. Lopez, M.F., Griffin, W.C.3rd., Melendez, R.I., and Becker, H.C. (2012). Repeated cycles of chronic intermittent ethanol exposure leads to the development of tolerance to aversive effects of ethanol in C57BL/6J mice. Alcohol. Clin. Exp. Res. 36, 1180-1187. https://doi.org/10.1111/j.1530-0277.2011.01717.x
  133. Lovejoy, D.A., and Balment, R.J. (1999). Evolution and physiology of the corticotrophin-releasing factor (CRF) family of neuropeptides in vertebrates. Gen. Comp. Endocrinol. 115, 1-22.
  134. Lowery-Gionta, E.G., Marcinkiewcz, C.A., and Kash, T.L. (2014). Functional alterations in the dorsal raphe nucleus following acute and chronic ethanol exposure. Neuropsychopharmacology [Epub ahead of print].
  135. Lutz, E.M., Sheward, W.J., West, K.M., Morrow, J.A., Fink, G., and Harmar, A.J. (1993). The VIP2 receptor, molecular characterisation of a cDNA encoding a novel receptor for vasoactive intestinal peptide. FEBS Lett. 334, 3-8. https://doi.org/10.1016/0014-5793(93)81668-P
  136. Marchant, N.J., Densmore, V.S., and Osborne, P.B. (2007). Coexpression of prodynorphin and corticotrophin-releasing hormone in the rat central amygdala, evidence of two distinct endogenous opioid systems in the lateral division. J. Comp. Neurol. 504, 702-715. https://doi.org/10.1002/cne.21464
  137. Martinez, L.A., Albers, H.E., and Petrulis, A. (2010). Blocking oxytocin receptors inhibits vaginal marking to male odors in female Syrian hamsters. Physiol. Behav. 101, 685-692. https://doi.org/10.1016/j.physbeh.2010.08.007
  138. Martinez, L.A., Levy, M.J., and Petrulis, A. (2013). Endogenous oxytocin is necessary for preferential Fos expression to male odors in the bed nucleus of the stria terminalis in female Syrian hamsters. Horm. Behav. 64, 653-664. https://doi.org/10.1016/j.yhbeh.2013.08.016
  139. Matsushita, H., Ishihara, A., Mashiko, S., Tanaka, T., Kanno, T., Iwaasa, H., Ohta, H., and Kanatani, A. (2009). Chronic intracerebroventricular infusion of nociceptin/orphanin FQ produces body weight gain by affecting both feeding and energy metabolism in mice. Endocrinology 150, 2668-2673. https://doi.org/10.1210/en.2008-1515
  140. Matzeu, A., Zamora-Martinez, E.R., and Martin-Fardon, R. (2014). The paraventricular nucleus of the thalamus is recruited by both natural rewards and drugs of abuse, recent evidence of a pivotal role for orexin/hypocretin signaling in this thalamic nucleus in drug-seeking behavior. Front. Behav. Neurosci. 8, 117.
  141. McDonald, A.J. (1989). Coexistence of somatostatin with neuropeptide Y, but not with cholecystokinin or vasoactive intestinal peptide, in neurons of the rat amygdala. Brain Res. 500, 37-45. https://doi.org/10.1016/0006-8993(89)90297-7
  142. McElligott, Z.A., Fox ME, Walsh PL, Urban DJ, Ferrel MS, Roth BL, and Wightman RM. (2013). Noradrenergic synaptic function in the bed nucleus of the stria terminalis varies in animal models of anxiety and addiction. Neuropsychopharmacology 38, 1665-1673. https://doi.org/10.1038/npp.2013.63
  143. McReynolds, J.R., Vranjkovic O, Thao M, Baker DA, Makky K, Lim Y, and Mantsch JR. (2014). Beta-2 adrenergic receptors mediate stress-evoked reinstatement of cocaine-induced conditioned place preference and increases in CRF mRNA in the bed nucleus of the stria terminalis in mice. Psychopharmacology 231, 3953-3963. https://doi.org/10.1007/s00213-014-3535-0
  144. Meloni, E.G., Gerety, L.P., Knoll, A.T., Cohen, B.M., and Carlezon, W.A. (2006). Behavioral and anatomical interactions between dopamine and corticotrophin-releasing factor in the rat. J. Neurosci. 26, 3855-3863. https://doi.org/10.1523/JNEUROSCI.4957-05.2006
  145. Micioni, D.i. Bonaventura, M.V., Ciccocioppo, R., Romano, A., Bossert, J.M., Rice, K.C., Ubaldi, M., St Laurent, R., Gaetani, S., Massi, M., et al. (2014). Role of bed nucleus of the stria terminalis corticotrophin-releasing factor receptors in frustration stress-induced binge-like palatable food consumption in female rats with a history of food restriction. J. Neurosci. 34, 11316-11324. https://doi.org/10.1523/JNEUROSCI.1854-14.2014
  146. Miyata, A., Arimura, A., Dahl, R.R., Minamino, N., Uehara, A., Jiang, L., Culler, M.D., and Coy, D.H. (1989). Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 164, 567-574. https://doi.org/10.1016/0006-291X(89)91757-9
  147. Miyata, A., Jiang, L., Dahl, R.D., Kitada, C., Kubo, K., Fujino, M., Minamino, N., and Arimura, A. (1990). Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem. Biophys. Res. Commun. 170, 643-648. https://doi.org/10.1016/0006-291X(90)92140-U
  148. Moga, M.M., and Gray, T.S. (1985a). Evidence for corticotropinreleasing factor, neurotensin, and somatostatin in the neural pathway from the central nucleus of the amygdala to the parabrachial nucleus. J. Comp. Neurol. 241, 275-284. https://doi.org/10.1002/cne.902410304
  149. Moga, M.M., and Gray, T.S. (1985b). Peptidergic efferents from the intercalated nuclei of the amygdala to the parabrachial nucleus in the rat. Neurosci. Lett. 61, 13-18. https://doi.org/10.1016/0304-3940(85)90393-3
  150. Moga, M.M, Saper, C.B, and Gray, T.S. (1989). Bed nucleus of the stria terminalis, cytoarchitecture, immunohistochemistry, and projection to the parabrachial nucleus in the rat. J. Comp. Neurol. 283, 315-332. https://doi.org/10.1002/cne.902830302
  151. Mollereau, C., Simons, M.J., Soularue, P., Liners, F., Vassart, G., Meunier, J.C., and Parmentier, M. (1996). Structure, tissue distribution, and chromosomal localization of the prepronociceptin gene. Proc. Natl. Acad. Sci. USA 93, 8666-8670. https://doi.org/10.1073/pnas.93.16.8666
  152. Morin, S.M., Ling, N., Liu, X.J., Kahl, S.D., and Gehlert, D.R. (1999). Differential distribution of urocortin- and corticotrophin-releasing factor-like immunoreactivities in the rat brain. Neuroscience 92, 281-291. https://doi.org/10.1016/S0306-4522(98)00732-5
  153. Myers, E.A., Banihashemi, L., and Rinaman, L. (2005). The anxiogenic drug yohimbine activates central viscerosensory circuits in rats. J. Comp. Neurol. 492, 426-441. https://doi.org/10.1002/cne.20727
  154. Nader, J., Chauvet, C., Rawas, R.E., Favot, L., Jaber, M., Thiriet, N., and Solinas, M. (2012). Loss of environmental enrichment increases vulnerability to cocaine addiction. Neuropsychopharmacology 37, 1579-1587. https://doi.org/10.1038/npp.2012.2
  155. Nagai, M.M., Gomes, F.V., Crestani, C.C., Resstel, L.B., and Joca, S.R. (2013). Noradrenergic neurotransmission within the bed nucleus of the stria terminalis modulates the retention of immobility in the rat forced swimming test. Behav. Pharmacol. 24, 214-221. https://doi.org/10.1097/FBP.0b013e3283618ae4
  156. Neal, C.R.Jr., Swann, J.M., and Newman, S.W. (1989). The colocalization of substance P and prodynorphin immunoreactivity in neurons of the medial preoptic area, bed nucleus of the stria terminalis and medial nucleus of the amygdala of the Syrian hamster. Brain Res. 496, 1-13 https://doi.org/10.1016/0006-8993(89)91046-9
  157. Neal, C.R., Mansour, A., Reinscheid, R., Nothacker, H.P., Civelli, O., and Watson, S.J. (1999). Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J. Comp. Neurol. 406, 503-547. https://doi.org/10.1002/(SICI)1096-9861(19990419)406:4<503::AID-CNE7>3.0.CO;2-P
  158. Nilsson, I., Johansen, J.E., Schalling, M., Hokfelt, T., and Fetissov, S.O. (2005). Maturation of the hypothalamic arcuate agoutirelated protein system during postnatal development in the mouse. Brain Res. Dev. Brain Res. 155, 147-154. https://doi.org/10.1016/j.devbrainres.2005.01.009
  159. Nobis, W.P., Kash, T.L., Silberman, Y., and Winder, D.G. (2011). $\beta$- Adrenergic receptors enhance excitatory transmission in the bed nucleus of the stria terminalis through a corticotrophin-releasing factor receptor-dependent and cocaine-regulated mechanism. Biol. Psychiat. 69, 1083-1090. https://doi.org/10.1016/j.biopsych.2010.12.030
  160. O'Donohue, T.L., Chronwall, B.M., Pruss, R.M., Mezey, E., Kiss, J.Z., Eiden, L.E., Massari, V.J, Tessel, R.E, Pickel, V.M., DiMaggio, D.A., et al. (1985). Neuropeptide Y and peptide YY neuronal and endocrine systems. Peptides 6, 755-768. https://doi.org/10.1016/0196-9781(85)90180-9
  161. Ogi, K., Kimura, C., Onda, H., Arimura, A., and Fujino, M. (1990). Molecular cloning and characterization of cDNA for the precursor of rat pituitary adenylate cyclase activating polypeptide (PACAP). Biochem. Biophys. Res. Commun. 173, 1271-1279. https://doi.org/10.1016/S0006-291X(05)80924-6
  162. Ohata, H., and Shibasaki, T. (2011). Involvement of CRF2 receptor in the brain regions in restraint-induced anorexia. Neuroreport 22, 494-498. https://doi.org/10.1097/WNR.0b013e3283487467
  163. Olive, M.F., Koenig, H.N., Nannini, M.A., and Hodge, C.W. (2002). Elevated extracellular CRF levels in the bed nucleus of the stria terminalis during ethanol withdrawal and reduction by subsequent ethanol intake. Pharmacol. Biochem. Behav. 72, 213-220. https://doi.org/10.1016/S0091-3057(01)00748-1
  164. Otto, C., Martin, M., Wolfer, D.P., Lipp, H.P., Maldonado, R., and Schutz, G. (2001). Altered emotional behavior in PACAP-type-Ireceptor- deficient mice. Brain Res. Mol. Brain Res. 92, 78-84. https://doi.org/10.1016/S0169-328X(01)00153-X
  165. Overstreet, D.H., Knapp, D.J., Moy, S.S., and Breese, G.R. (2003). A 5-HT1A agonist and a 5-HT2c antagonist reduce social interaction deficit induced by multiple ethanol withdrawals in rats. Psychopharmacology 167, 344-352. https://doi.org/10.1007/s00213-003-1425-y
  166. Palkovits, M., Somogyvari-Vigh, A., and Arimura, A. (1995). Concentrations of pituitary adenylate cyclase activating polypeptide (PACAP) in human brain nuclei. Brain Res. 699, 116-120. https://doi.org/10.1016/0006-8993(95)00869-R
  167. Pandey, S.C., Carr, L.G., Heilig, M., Ilveskoski, E., and Thiele, T.E. (2003). Neuropeptide y and alcoholism, genetic, molecular, and pharmacological evidence. Alcohol. Clin. Exp. Res. 27, 149-154. https://doi.org/10.1097/01.ALC.0000052706.21367.0E
  168. Patki, G., Solanki, N., Atrooz, F., Ansari, A., Allam, F., Jannise, B., Maturi, J., and Salim, S. (2014). Novel mechanistic insights into treadmill exercise based rescue of social defeat-induced anxiety-like behavior and memory impairment in rats. Physiol. Behav. 130, 135-144. https://doi.org/10.1016/j.physbeh.2014.04.011
  169. Peyron, C., Tighe, D.K., van den Pol, A.N., de Lecea, L., Heller, H.C., Sutcliffe, J.G., and Kilduff, T.S. (1998). Neurons containing hypocretin (orexin) project to multiple neuronal systems. J. Neurosci. 18, 9996-10015
  170. Phelix, C.F., Liposits, Z., and Paull, W.K. (1992). Monoamine innervation of the bed nucleus of stria terminalis, an electron microscopic investigation. Brain Res. Bull. 28, 949-965. https://doi.org/10.1016/0361-9230(92)90218-M
  171. Piggins, H.D., Stamp, J.A., Burns, J., Rusak, B., and Semba, K. (1996). Distribution of pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactivity in the hypothalamus and extended amygdala of the rat. J. Comp. Neurol. 376, 278-294. https://doi.org/10.1002/(SICI)1096-9861(19961209)376:2<278::AID-CNE9>3.0.CO;2-0
  172. Pisegna, J.R., and Wank, S.A. (1993). Molecular cloning and functional expression of the pituitary adenylate cyclase-activating polypeptide type I receptor. Proc. Natl. Acad. Sci. USA 90, 6345-6349. https://doi.org/10.1073/pnas.90.13.6345
  173. Pleil, K.E., Lopez, A., McCall, N., Jijon, A.M., Bravo, J.P., and Kash, T.L. (2012). Chronic stress alters neuropeptide Y signaling in the bed nucleus of the stria terminalis in DBA/2J but not C57BL/6J mice. Neuropharmacology 62, 1777-1786. https://doi.org/10.1016/j.neuropharm.2011.12.002
  174. Polidori, C., de Caro, G., and Massi, M. (2000). The hyperphagic effect of nociceptin/orphanin FQ in rats. Peptides 21, 1051-162. https://doi.org/10.1016/S0196-9781(00)00243-6
  175. Pomonis, J.D., Billington, C.J., and Levine, A.S. (1996). Orphanin FQ, agonist of orphan opioid receptor ORL1, stimulates feeding in rats. Neuroreport 8, 369-371. https://doi.org/10.1097/00001756-199612200-00072
  176. Pompolo, S., Ischenko, O., Pereira, A., Iqbal, J., and Clarke, I.J. (2005). Evidence that projections from the bed nucleus of the stria terminalis and from the lateral and medial regions of the preoptic area provide input to gonadotropin releasing hormone (GNRH) neurons in the female sheep brain. Neuroscience 132, 421-436. https://doi.org/10.1016/j.neuroscience.2004.12.042
  177. Poulin, J.F., Arbour, D., Laforest, S., and Drolet, G. (2009). Neuroanatomical characterization of endogenous opioids in the bed nucleus of the stria terminalis. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 1356-1365. https://doi.org/10.1016/j.pnpbp.2009.06.021
  178. Rangani, R.J., Upadhya, M.A., Nakhate, K.T., Kokare, D.M., and Subhedar, N.K. (2012). Nicotine evoked improvement in learning and memory is mediated through NPY Y1 receptors in rat model of Alzheimer's disease. Peptides 33, 317-328. https://doi.org/10.1016/j.peptides.2012.01.004
  179. Ravinder, S., Burghardt, N.S., Brodsky, R., Bauer, E.P., and Chattarji, S. (2013). A role for the extended amygdala in the fear-enhancing effects of acute selective serotonin reuptake inhibitor treatment. Transl. Psychiatry 3, e209. https://doi.org/10.1038/tp.2012.137
  180. Reinscheid, R.K., Nothacker, H.P., Bourson, A., Ardati, A., Henningsen, R.A., Bunzow, J.R., Grandy, D.K., Langen, H., Monsma, F.J., and Civelli, O. (1995). Orphanin FQ, a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270, 792-794. https://doi.org/10.1126/science.270.5237.792
  181. Ressler, K.J., Mercer, K.B., Bradley, B., Jovanovic, T., Mahan, A., Kerley, K., Norrholm, S.D., Kilaru, V., Smith, A.K., Myers, A.J., et al. (2011). Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 470, 492-497. https://doi.org/10.1038/nature09856
  182. Reul, J.M., and Holsboer, F. (2002). On the role of corticotropinreleasing hormone receptors in anxiety and depression. Dialogues Clin. Neurosci. 4, 31-46.
  183. Reuss, S., and Olcese, J. (1995). Neuropeptide Y, distribution of immunoreactivity and quantitative analysis in diencephalic structures and cerebral cortex of dwarf hamsters under different photoperiods. Neuroendocrinology 61, 337-347. https://doi.org/10.1159/000126856
  184. Reuss, S., Hurlbut, E.C., Speh, J.C., and Moore, R.Y. (1990). Neuropeptide Y localization in telencephalic and diencephalic structures of the ground squirrel brain. Am. J. Anat. 188, 163-174. https://doi.org/10.1002/aja.1001880206
  185. Robles, C.F., McMackin, M.Z., Campi, K.L., Doig, I.E., Takahashi, E.Y., Pride, M.C., and Trainor, B.C. (2014). Effects of kappa opioid receptors on conditioned place aversion and social interaction in males and females. Behav. Brain Res. 262, 84-93. https://doi.org/10.1016/j.bbr.2014.01.003
  186. Rodi, D., Zucchini, S., Simonato, M., Cifani, C., Massi, M., and Polidori, C. (2007). Functional antagonism between nociceptin/ orphanin FQ (N/OFQ) and corticotropin-releasing factor (CRF) in the rat brain, evidence for involvement of the bed nucleus of the stria terminalis. Psychopharmacology 196, 523-531.
  187. Roman, C.W., Lezak, K.R., Hartsock, M.J., Falls, W.A., Braas, K.M., Howard, A.B., Hammack, S.E., and May, V. (2014). PAC1 receptor antagonism in the bed nucleus of the stria terminalis (BNST) attenuates the endocrine and behavioral consequences of chronic stress. Psychoneuroendocrinology 47, 151-165. https://doi.org/10.1016/j.psyneuen.2014.05.014
  188. Roy, A., and Pandey, S.C. (2002). The decreased cellular expression of neuropeptide Y protein in rat brain structures during ethanol withdrawal after chronic ethanol exposure. Alcohol Clin. Exp. Res. 26, 796-803. https://doi.org/10.1111/j.1530-0277.2002.tb02607.x
  189. Russell, S.E., Rachlin, A.B., Smith, K.L., Muschamp, J., Berry, L., Zhao, Z., and Chartoff, E.H. (2014). Sex differences in sensitivity to the depressive-like effects of the kappa opioid receptor agonist U-50488 in rats. Biol. Psychiatry 76, 213-222. https://doi.org/10.1016/j.biopsych.2013.07.042
  190. Rygula, R., Abumaria, N., Flugge, G., Fuchs, E., Ruther, E., and Havemann-Reinecke, U. (2005). Anhedonia and motivational deficits in rats, impact of chronic social stress. Behav. Brain Res. 162, 127-134. https://doi.org/10.1016/j.bbr.2005.03.009
  191. Rygula, R., Abumaria, N., Domenici, E., Hiemke, C., and Fuchs, E. (2006). Effects of fluoxetine on behavioral deficits evoked by chronic social stress in rat. Behav. Brain Res. 174, 188-192. https://doi.org/10.1016/j.bbr.2006.07.017
  192. Sahuque, L.L., Kullberg, E.F., McGeehan, A.J., Kinder, J.R., Hicks, M.P., Blanton, M.G., Janak, P.H., and Olive, M.F. (2006). Anxiogenic and aversive effects of corticotrophin-releasing factor (CRF) in the bed nucleus of stria terminalis in the rat, role of CRF receptor subtypes. Psychopharmacology 186, 122-132. https://doi.org/10.1007/s00213-006-0362-y
  193. Sakanaka, M., Shibasaki, T., and Lederis, K. (1986). Distribution and efferent projections of corticotrophin-releasing factor-like immunoreactivity in the rat amygdaloid complex. Brain Res. 382, 213-238. https://doi.org/10.1016/0006-8993(86)91332-6
  194. Schafer, E.A., and Mackenzie, K. (1911). The Action of Animal Extracts on Milk Secretion. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 84, 16-22. https://doi.org/10.1098/rspb.1911.0042
  195. Shen, C.L. (1987). Distribution of neuropeptide Y immunoreactivity in the forebrain of the rat. Proc. Natl. Sci. Counc. Repub. China B 11, 115-127.
  196. Sheward, W.J., Lutz, E.M., and Harmar, A.J. (1995). The distribution of vasoactive intestinal peptide2 receptor messenger RNA in the rat brain and pituitary gland as assessed by in situ hybridization. Neuroscience 67, 409-418. https://doi.org/10.1016/0306-4522(95)00048-N
  197. Shin, J.W., Geerling, J.C., and Loewy, A.D. (2008). Inputs to the ventrolateral bed nucleus of the stria terminalis. J. Comp. Neurol. 511, 628-657. https://doi.org/10.1002/cne.21870
  198. Silberman, Y., Matthews, R.T., and Winder, D.G. (2013). A corticotrophin releasing factor pathway for ethanol regulation of the ventral tegmental area in the bed nucleus of stria terminalis. J. Neurosci. 33, 950-960. https://doi.org/10.1523/JNEUROSCI.2949-12.2013
  199. Sink, K.S., Walker, D.L., Freeman, S.M., Flandreau, E.I., Ressler, K.J., and Davis, M. (2013). Effects of continuously enhanced corticotrophin releasing factor expression within the bed nucleus of the stria terminalis on conditioned and unconditioned anxiety. Mol. Psychiatr. 18, 308-319. https://doi.org/10.1038/mp.2011.188
  200. Slawecki, C.J., Somes, C., and Ehlers, C.L. (1999). Effects of chronic ethanol exposure on neurophysiological responses to corticotropin-releasing factor and neuropeptide Y. Alcohol. Alcohol. 34, 289-299. https://doi.org/10.1093/alcalc/34.3.289
  201. Smith, Y., Parent, A., Kerkerian, L., and Pelletier, G. (1985). Distribution of neuropeptide Y immunoreactivity in the basal forebrain and upper brainstem of the squirrel monkey (Saimiri sciureus). J. Comp. Neurol. 236, 71-89. https://doi.org/10.1002/cne.902360107
  202. Sparrow, A.M., Lowery-Gionta, E.G., Pleil, K.E., Li, C., Sprow, G.M., Cox, B.R, Rinker, J.A., Jijon, A.M., Pena, J., Navarro, M., et al. (2012). Central neuropeptide Y modulates binge-like ethanol drinking in C57BL/6J mice via Y1 and Y2 receptors. Neuropsychopharmacology 37, 1409-1421. https://doi.org/10.1038/npp.2011.327
  203. Spengler, D., Waeber, C., Pantaloni, C., Holsboer, F., Bockaert, J., Seeburg, P.H., and Journot, L. (1993). Differential signal transduction by five splice variants of the PACAP receptor. Nature 365, 170-175. https://doi.org/10.1038/365170a0
  204. Stroth, N., Holighaus, Y., Ait-Ali, D., and Eiden, L.E. (2011). PACAP, a master regulator of neuroendocrine stress circuits and the cellular stress response. Ann. N Y Acad. Sci. 1220, 49-59. https://doi.org/10.1111/j.1749-6632.2011.05904.x
  205. Sullivan, G.M., Apergis, J., Bush, D.E., Johnson, L.R., Hou, M., and Ledoux, J.E. (2004). Lesions in the bed nucleus of the stria terminalis disrupt corticosterone and freezing responses elicited by a contextual but not by a specific cue-conditioned fear stimulus. Neuroscience 128, 7-14. https://doi.org/10.1016/j.neuroscience.2004.06.015
  206. Szucs, A., Berton, F., Sanna, P.P., and Francesconi, W. (2012). Excitability of jcBNST neurons is reduced in alcohol-dependent animals during protracted alcohol withdrawal. PLoS One 7, e42313. https://doi.org/10.1371/journal.pone.0042313
  207. Takagishi, M., and Chiba, T. (1991). Efferent projections of the infralimbic (area 25) region of the medial prefrontal cortex in the rat, an anterograde tracer PHA-L study. Brain Res. 566, 26-39. https://doi.org/10.1016/0006-8993(91)91677-S
  208. Takahashi, L.K. (2001). Role of CRF(1) and CRF(2) receptors in fear and anxiety. Neurosci. Biobehav. Rev. 25, 627-636. https://doi.org/10.1016/S0149-7634(01)00046-X
  209. Tasan, R.O., Nguyen, N.K., Weger, S., Sartori, S.B., Singewald, N., Heilbronn, R., Herzog, H., and Sperk, G. (2010). The central and basolateral amygdala are critical sites of neuropeptide Y/Y2 receptor-mediated regulation of anxiety and depression. J. Neurosci. 30, 6282-6290. https://doi.org/10.1523/JNEUROSCI.0430-10.2010
  210. Tran, L., Schulkin, J., and Greenwood-Van Meerveld, B. (2014). Importance of CRF receptor-mediated mechanisms of the bed nucleus of the stria terminalis in the processing of anxiety and pain. Neuropsychopharmacology 39, 2633-2645. https://doi.org/10.1038/npp.2014.117
  211. Uddin, M., Chang, S.C., Zhang, C., Ressler, K., Mercer, K.B., Galea, S., Keyes, K.M., McLaughlin, K.A., Wildman, D.E., Aiello, A.E., et al. (2013). Adcyap1r1 genotype, posttraumatic stress disorder, and depression among women exposed to childhood maltreatment. Depress Anxiety 30, 251-258. https://doi.org/10.1002/da.22037
  212. van den Pol, A.N. (2012). Neuropeptide transmission in brain circuits. Neuron 76, 98-115. https://doi.org/10.1016/j.neuron.2012.09.014
  213. Varty, G.B., Lu, S.X., Morgan, C.A., Cohen-Williams, M.E., Hodgson, R.A., Smith-Torhan, A., Zhang, H., Fawzi, A.B., Graziano, M.P., Ho, G.D., et al. (2008). The anxiolytic-like effects of the novel, orally active nociceptin opioid receptor agonist 8- [bis(2-methylphenyl)methyl]-3-phenyl-8-azabicyclo[3.2.1] octan-3- ol (SCH 221510). J. Pharmacol. Exp. Ther. 326, 672-682. https://doi.org/10.1124/jpet.108.136937
  214. Vaudry, D., Falluel-Morel, A., Bourgault, S., Basille, M., Burel, D., Wurtz, O., Fournier, A., Chow, B.K., Hashimoto, H., Galas, L., et al. (2009). Pituitary adenylate cyclase-activating polypeptide and its receptors, 20 years after the discovery. Pharmacol. Rev. 61, 283-357. https://doi.org/10.1124/pr.109.001370
  215. Vertes, R.P. (2004). Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51, 32-58. https://doi.org/10.1002/syn.10279
  216. Walker, D.L., and Davis, M. (1997). Double dissociation between the involvement of the bed nucleus of the stria terminalis and the central nucleus of the amygdala in startle increases produced by conditioned versus unconditioned fear. J. Neurosci. 17, 9375-9383.
  217. Walker, D.L., Miles, L.A., and Davis, M. (2009a). Selective participation of the bed nucleus of the stria terminalis and CRF in sustained anxiety-like versus phasic fear-like responses. Prog. Neuropsychopharmacol. Biol. Psychiatry 33, 1291-1308. https://doi.org/10.1016/j.pnpbp.2009.06.022
  218. Walker, D.L., Yang, Y., Ratti, E., Corsi, M., Trist, D., and Davis, M. (2009b). Differential effects of the CRF-R1 antagonist GSK876008 on fear-potentiated, light- and CRF-enhanced startle suggest preferential involvement in sustained vs phasic threat responses. Neuropsychopharmacology 34, 1533-1542. https://doi.org/10.1038/npp.2008.210
  219. Walter, A., Mai, J.K., Lanta, L., and Gorcs, T. (1991). Differential distribution of immunohistochemical markers in the bed nucleus of the stria terminalis in the human brain. J. Chem. Neuroanat. 4, 281-298. https://doi.org/10.1016/0891-0618(91)90019-9
  220. Wang, J., Fang, Q., Liu, Z., and Lu, L. (2006). Region-specific effects of brain corticotropin-releasing factor receptor type 1 blockade on footshock-stress- or drug-priming-induced reinstatement of morphine conditioned place preference in rats. Psychopharmacology 185, 19-28. https://doi.org/10.1007/s00213-005-0262-6
  221. Wang, L., Cao, C., Wang, R., Qing, Y., Zhang, J., and Zhang, X.Y. (2013). PAC1 receptor (ADCYAP1R1) genotype is associated with PTSD's emotional numbing symptoms in Chinese earthquake survivors. J. Affect Disord. 150, 156-159. https://doi.org/10.1016/j.jad.2013.01.010
  222. Weinberg, D.H., Sirinathsinghji, D.J., Tan, C.P., Shiao, L.L., Morin, N., Rigby, M.R., Heavens, R.H., Rapoport, D.R., Bayne, M.L., Cascieri, M.A., et al. (1996). Cloning and expression of a novel neuropeptide Y receptor. J. Biol. Chem. 271, 16435-16438. https://doi.org/10.1074/jbc.271.28.16435
  223. Wenzel, J.M., Cotton, S.W., Dominguez, H.M., Lane, J.E., Shelton, K., Su, Z.I., and Ettenberg, A. (2014). Noradrenergic beta-receptor antagonism within the central nucleus of the amygdala or bed nucleus of the stria terminalis attenuates the negative/anxiogenic effects of cocaine. J. Neurosci. 34, 3467-34674. https://doi.org/10.1523/JNEUROSCI.3861-13.2014
  224. Wills, T.A., Klug, J.R., Silberman, Y., Baucum, A.J., Weitlauf, C., Colbran, R.J., Delpire, E., and Winder, D.G. (2012). GluN2B subunit deletion reveals key role in acute and chronic ethanol sensitivity of glutamate synapses in bed nucleus of the stria terminalis. Proc. Natl. Acad. Sci. USA 109, E278-287. https://doi.org/10.1073/pnas.1113820109

Cited by

  1. Diet-Induced Obesity and Circadian Disruption of Feeding Behavior vol.11, 2017, https://doi.org/10.3389/fnins.2017.00023
  2. Epigenetic impacts of endocrine disruptors in the brain vol.44, 2017, https://doi.org/10.1016/j.yfrne.2016.09.002
  3. Pharmacology of the Bed Nucleus of the Stria Terminalis vol.2, pp.6, 2016, https://doi.org/10.1007/s40495-016-0077-7
  4. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders vol.21, pp.4, 2016, https://doi.org/10.1038/mp.2016.1
  5. Ventral Tegmental Area Afferents and Drug-Dependent Behaviors vol.7, 2016, https://doi.org/10.3389/fpsyt.2016.00030
  6. Contrasting Regulation of Catecholamine Neurotransmission in the Behaving Brain: Pharmacological Insights from an Electrochemical Perspective vol.69, pp.1, 2017, https://doi.org/10.1124/pr.116.012948
  7. Role of the bed nucleus of the stria terminalis in aversive learning and memory vol.24, pp.9, 2017, https://doi.org/10.1101/lm.044206.116
  8. The bed nucleus of the stria terminalis in drug-associated behavior and affect: A circuit-based perspective vol.122, 2017, https://doi.org/10.1016/j.neuropharm.2017.03.028
  9. Acute engagement of Gq-mediated signaling in the bed nucleus of the stria terminalis induces anxiety-like behavior 2016, https://doi.org/10.1038/mp.2016.218
  10. Insights into the central pathways involved in the emetic and behavioural responses to exendin-4 in the ferret vol.202, 2017, https://doi.org/10.1016/j.autneu.2016.09.003
  11. Dissociation in control of physiological and behavioral responses to emotional stress by cholinergic neurotransmission in the bed nucleus of the stria terminalis in rats vol.101, 2016, https://doi.org/10.1016/j.neuropharm.2015.10.018
  12. Effects of chronic alcohol consumption on neuronal function in the non-human primate BNST vol.21, pp.6, 2016, https://doi.org/10.1111/adb.12289
  13. Oxytocin receptor neurotransmission in the dorsolateral bed nucleus of the stria terminalis facilitates the acquisition of cued fear in the fear-potentiated startle paradigm in rats vol.121, 2017, https://doi.org/10.1016/j.neuropharm.2017.04.039
  14. Effects of chronic ethanol exposure on neuronal function in the prefrontal cortex and extended amygdala vol.99, 2015, https://doi.org/10.1016/j.neuropharm.2015.06.017
  15. Optogenetic study of the projections from the bed nucleus of the stria terminalis to the central amygdala vol.114, pp.5, 2015, https://doi.org/10.1152/jn.00677.2015
  16. Unravelling the role and mechanism of adipokine and gastrointestinal signals in animal models in the nonhomeostatic control of energy homeostasis: Implications for binge eating disorder pp.10724133, 2018, https://doi.org/10.1002/erv.2641
  17. Reversible Inactivation of the Bed Nucleus of the Stria Terminalis Prevents Reinstatement But Not Renewal of Extinguished Fear , , vol.2, pp.3, 2015, https://doi.org/10.1523/eneuro.0037-15.2015
  18. PAC1 receptor ( ADCYAP1R1 ) genotype and problematic alcohol use in a sample of young women vol.13, pp.None, 2015, https://doi.org/10.2147/ndt.s137331
  19. GLP-1 action in the mouse bed nucleus of the stria terminalis vol.131, pp.None, 2018, https://doi.org/10.1016/j.neuropharm.2017.12.007
  20. Anterior cingulate cortex connectivity is associated with suppression of behaviour in a rat model of chronic pain vol.2, pp.None, 2015, https://doi.org/10.1177/2398212818779646
  21. Brain region-dependent gene networks associated with selective breeding for increased voluntary wheel-running behavior vol.13, pp.8, 2015, https://doi.org/10.1371/journal.pone.0201773
  22. Synaptic Plasticity in the Bed Nucleus of the Stria Terminalis: Underlying Mechanisms and Potential Ramifications for Reinstatement of Drug- and Alcohol-Seeking Behaviors vol.9, pp.9, 2015, https://doi.org/10.1021/acschemneuro.8b00169
  23. Sex-Dependent Effects of Mild Blast-induced Traumatic Brain Injury on Corticotropin-releasing Factor Receptor Gene Expression: Potential Link to Anxiety-like Behaviors vol.392, pp.None, 2015, https://doi.org/10.1016/j.neuroscience.2018.09.014
  24. Neuropeptidergic Control of an Internal Brain State Produced by Prolonged Social Isolation Stress vol.83, pp.None, 2018, https://doi.org/10.1101/sqb.2018.83.038109
  25. Role of the Bed Nucleus of the Stria Terminalis in PTSD: Insights From Preclinical Models vol.13, pp.None, 2019, https://doi.org/10.3389/fnbeh.2019.00068
  26. New Frontiers in Anxiety Research: The Translational Potential of the Bed Nucleus of the Stria Terminalis vol.10, pp.None, 2015, https://doi.org/10.3389/fpsyt.2019.00510
  27. The first identification of nesfatin-1-expressing neurons in the human bed nucleus of the stria terminalis vol.126, pp.3, 2015, https://doi.org/10.1007/s00702-019-01984-3
  28. Inactivation of a CRF-dependent amygdalofugal pathway reverses addiction-like behaviors in alcohol-dependent rats vol.10, pp.1, 2015, https://doi.org/10.1038/s41467-019-09183-0
  29. Turning the ′Tides on Neuropsychiatric Diseases: The Role of Peptides in the Prefrontal Cortex vol.14, pp.None, 2020, https://doi.org/10.3389/fnbeh.2020.588400
  30. Dynorphin and its role in alcohol use disorder vol.1735, pp.None, 2020, https://doi.org/10.1016/j.brainres.2020.146742
  31. Corticotropin Releasing Hormone Signaling in the Bed Nuclei of the Stria Terminalis as a Link to Maladaptive Behaviors vol.15, pp.None, 2021, https://doi.org/10.3389/fnins.2021.642379
  32. Extended Amygdala Neuropeptide Circuitry of Emotional Arousal: Waking Up on the Wrong Side of the Bed Nuclei of Stria Terminalis vol.15, pp.None, 2021, https://doi.org/10.3389/fnbeh.2021.613025
  33. Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates dependence-induced alcohol drinking and anxiety-like behavior in male rats vol.46, pp.3, 2021, https://doi.org/10.1038/s41386-020-00904-4
  34. Functional Dissection of Glutamatergic and GABAergic Neurons in the Bed Nucleus of the Stria Terminalis vol.44, pp.2, 2015, https://doi.org/10.14348/molcells.2021.0006