References
- Alban, S., Schauerte, A. and Franz, G. 2002. Anticoagulan t sulfated polysaccharides: Part I. Synthesis and structure -activity relationships of new pullulan sulfates. Carbohyd. polym. 47, 267-276. https://doi.org/10.1016/S0144-8617(01)00178-3
- Gomez-Ordonez, E., Jimenez-Escrig, A. and Ruperez, P. 2014. Bioactivity of sulfated polysaccharides from the edible red seaweed Mastocarpus stellatus. Bioact. Carbo hydr. Dietary Fibre, 3, 29-40. https://doi.org/10.1016/j.bcdf.2014.01.002
- Sellimi, S., Kadri, N., Barragan-Montero, V., Laouer, H., Hajji, M. and Nasri, M. 2014. Fucans from a Tunisian brown seaweed Cystoseira barbata: Structural characteristic and antioxidant activity. Int. J. Biol. Macromol., 66, 281-288. https://doi.org/10.1016/j.ijbiomac.2014.02.041
- Wu, Y., Cui, S. W., Tang, J. and Gu, X. H. 2007. Optimization of extraction process of crude polysaccharides from boat-fruited sterculia seeds by response surface methodology. Food Chem., 105, 1599-1605. https://doi.org/10.1016/j.foodchem.2007.03.066
- Wang, X., Zhang, Z., Yao, Z., Zhao, M. and Qi, H. 2013. Sulfation, anticoagulant and antioxidant activities of poly saccharide from green algae Enteromorpha linza. Int. J. Biol. Macromol., 58, 225-230. https://doi.org/10.1016/j.ijbiomac.2013.04.005
- Wang, X., Wang, J., Zhang, J., Zhao, B., Yao, J. and Wang, Y. 2010. Structure-antioxidant relationships of sulfated galactomannan from guar gum. Int. J. Biol. Macro mol., 46, 59-66. https://doi.org/10.1016/j.ijbiomac.2009.10.004
- Telles, C. B. S., Sabry, D. A., Almeida-Lima, J., Costa, M. S. S. P., Melo-Silveira, R. F., Trindade, E. S., Sassaki, G. L., Wisbeck, E., Furlan, S. A., Leite, E. L. and Rocha, H. A. O. 2011. Sulfation of the extracellular poly saccharide produced by the edible mushroom Pleurotussajor-caju alters its antioxidant, anticoagulant and antipr oliferative properties in vitro. Carbohyd. polym., 85, 514-521. https://doi.org/10.1016/j.carbpol.2011.02.038
- Lu, Y., Wang, D. Y., Hu, Y. L., Huang, X. Y. and Wang, J. M. 2008. Sulfated modification of epimedium polysac charide and effects of the modifiers on cellular infectivit y of IBDV. Carbohyd. polym., 71, 180-186. https://doi.org/10.1016/j.carbpol.2007.05.024
- Chen, Y., Zhang, H., Wang, Y., Nie, S., Li, C. and Xie, M. 2015. Sulfated modification of the polysaccharides from Ganoderma atrum and their antioxidant and immun omodulating activities. Food Chem., 186, 231-238. https://doi.org/10.1016/j.foodchem.2014.10.032
- Wang, Y., Peng, Y., Wei, X., Yang, Z., Xiao, J. and Jin, Z. 2010. Sulfation of tea polysaccharides: Synthesis, characterization and hypoglycemic activity. Int. J. Biol. Macromol., 46, 270-274. https://doi.org/10.1016/j.ijbiomac.2009.12.007
- Hussein, M. M., Helmy, W. A. and Salem, H. M. 1998. Biological activities of some galactomannans and their sulfated derivatives. Phytochemistry, 48, 479-484. https://doi.org/10.1016/S0031-9422(98)00024-7
-
Jian-Ya, Q., Ye-Yu, B., Jing, T. and Wei, C. 2015. Antio xidation and
${\alpha}$ -glucosidase inhibitory activites of barley polysaccharides modified with sulfation. LWT-Food Sci. Technol., 64, 104-111. - Lu, X., Mo, X., Guo, H. and Zhang, Y. 2012. Sulfation modification and anticoagulant activity of the polysaccha rides obtained from persimmon (Diospyros kaki L.) fruits. Int. J. Biol. Macromol., 51, 1189-1195. https://doi.org/10.1016/j.ijbiomac.2012.08.028
- Geresh, S., Mamontov, A. and Weinstein, J. 2002. Sulfati on of extracellular polysaccharides of red microalgae: preparation, characterization and properties. J. Biochem. Biophys. Methods., 50, 179-187. https://doi.org/10.1016/S0165-022X(01)00185-3
- Al-Hothaly, K. A., Adetutu, E. M., Taha, M., Fabbri, D., Lorenzetti, C., Conti, R., May, B. H., Shar, S. S., Bayoumi, R. A. and Ball, A. S. 2015. Bio-harvesting and pyrolysis of the microalgae Botryococcus braunii. Bioresour. Technol., 191, 117-123. https://doi.org/10.1016/j.biortech.2015.04.113
- Yang, X. B., Gao, X. D., Han, F. and Tan, R. X. 2005. Sulfation of a polysaccharide produced by a marine filamentous fungus Phoma herbarum YS4108 alters its antioxidant properties in vitro. Biochim. Biophys. Acta, 1725, 120-127. https://doi.org/10.1016/j.bbagen.2005.06.013
- Lee, C. G., Lee, J., Lee, D. G., Kim, J. W., Alnaeeli, M., Park, Y. I. and Park, J. K. 2016. Immunostimulating activity of polyhydric alcohol isolated from Taxus cuspidata. Int. J. Biol. Macromol., 85, 505-513. https://doi.org/10.1016/j.ijbiomac.2016.01.027
- Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350-356. https://doi.org/10.1021/ac60111a017
- Mohsin, S., Mahadevan, R. and Kurup, G. M. 2014. Free-radical-scavenging activity and antioxidant effect of ascophyllan from marine brown algae Padina tetrastromatica. Biomed. Prev. Nutr., 4, 75-79. https://doi.org/10.1016/j.bionut.2013.08.006
- Zheng, L., Zhao, M., Xiao, C., Zhao, Q. and Su, G. 2016. Practical problems when using ABTS assay to assess the radical-scavenging activity of peptides: Importance of controlling reaction pH and time. Food Chem., 192, 288-294. https://doi.org/10.1016/j.foodchem.2015.07.015
- Goo, B. G., Baek, G., Choi, D. J., Park, Y. I., Synytsya, A., Bleha, R., Seong, D. H., Lee, C. G. and Park, J. K. 2013. Characterization of a renewable extracellular polysaccharide from defatted microalgae Dunaliella tertiolecta. Bioresour. Technol., 129, 343-50. https://doi.org/10.1016/j.biortech.2012.11.077