DOI QR코드

DOI QR Code

Seasonal Differences of Cultivable Bacterial Communities Associated with the Marine Sponge, Petrosia corticata, Collected from Jeju Island

제주도에 서식하는 Petrosia corticata 해면의 배양가능한 공생세균 군집구조의 계절적 차이

  • Jeong, Jong-Bin (Department of Biological Science and Biotechnology, Hannam University) ;
  • Park, Jin-Sook (Department of Biological Science and Biotechnology, Hannam University)
  • 정종빈 (한남대학교 생명시스템과학과) ;
  • 박진숙 (한남대학교 생명시스템과학과)
  • Received : 2015.12.28
  • Accepted : 2016.01.04
  • Published : 2015.12.31

Abstract

The community structure of cultivable bacteria associated with the marine sponge, Petrosia corticata, collected from Jeju Island in summer (September) of 2012 and winter (January) of 2013, were compared by the PCR-ARDRA method. Bacterial strains were cultured for 4 days at $26^{\circ}C$ on Zobell medium and marine agar medium. After PCR amplification of 16S rRNA gene of individual strains, the restriction enzymes MspI and HaeIII were used to make restriction patterns. As a result, 24 ARDRA patterns from the summer sponge and 20 ARDRA patterns from the winter sponge were obtained. The sequencing result of 1-3 selected strains from each pattern showed over 98% similarities with the known sequences from the public database. At the phylum level, the bacterial community structures of both sponges (summer and winter) were identical qualitatively and composed of 4 phyla : Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Alphaproteobacteria accounted for 42.5% of total in summer sponge and 25.2% in winter, decreasing in the winter sample. Gammaproteobacteria accounted for 27.5% of total in summer sponge and 35.2% in winter, increasing in the winter sample. At the genus and species level, summer sponge had more diverse bacterial communities than winter sponge. Actinobacteria, Bacteroidetes, and Firmicutes increased in the winter sample.

Keywords

References

  1. Cardenas, C. A., Bell, J. J., Davy, S. K., Hoggard, M., and Taylor, M. W. 2014. Influence of environmental variation on symbiotic bacterial communities of two temperate sponges. FEMS Microbiol. Ecol. 88, 516-527. https://doi.org/10.1111/1574-6941.12317
  2. Davis, J. W. and Sizemore, R. K. 1982. Incidence of Vibrio species associated with blue crabs (Callinectes sapidus) collected from Galveston Bay, Texas. Appl. Environ. Microbiol. 43, 1092-1097.
  3. Erwin, P. M., Pita, L., Lopez-Legentil, S., and Turon, X. 2012. Stability of sponge-associated bacteria over large seasonal shifts in temperature and irradiance. Appl. Environ. Microbiol. 78, 7358-7368. https://doi.org/10.1128/AEM.02035-12
  4. Imhoff, J. F. and Stohr, R. 2003. Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea. In Sponges (Porifera). Springer Berlin Heidelberg. 37, 35-57. https://doi.org/10.1007/978-3-642-55519-0_2
  5. Jeong, I. H. and Park, J. S. 2012. Phylogenetic analysis of bacterial diversity in the marine sponge, Asteropus simplex, collected from Jeju island. Korean J. Microbiol. 48, 275-283. https://doi.org/10.7845/kjm.2012.064
  6. Jeong, J. B. and Park, J. S. 2012. Seasonal differences of bacterial communities associated with the marine sponge, Hymeniacidon sinapium. Korean J. Microbiol. 48, 262-269. https://doi.org/10.7845/kjm.2012.063
  7. Kim, J. S., Lim, Y. J., Im, K. S., Jung, J. H., Shim, C. J., Lee, C. O., Hong, J., and Lee, H. 1999. Cytotoxic polyacetylenes from the marine sponge Petrosia sp. J. Nat. Prod. 62, 554-559. https://doi.org/10.1021/np9803427
  8. Lee, Y. K., Lee, J. H., and Lee, H. K. 2001. Microbial symbiosis in marine sponges. J. Microbiol. 39, 254-264.
  9. Li, H. Y., Matsunaga, S., and Fusetani, N. 1994. Corticatic acids A-C, antifungal acetylenic acids from the marine sponge, Petrosia corticata. J. Nat. Prod. 57, 1464-1467. https://doi.org/10.1021/np50112a022
  10. Li, Z., Hu, Y., Liu, Y., Huang, Y., He, L., and Miao, X. 2007. 16S rDNA clone library-based bacterial phylogenetic diversity associated with three South China Sea sponges. World J. Microbiol. Biotechnol. 23, 1265-1272. https://doi.org/10.1007/s11274-007-9359-x
  11. Lim, Y. J., Park, H. S., Im, K. S., Lee, C. O., Hong, J., Lee, M. Y., Kim, D. K., and Jung, J. H. 2001. Additional cytotoxic polyacetylenes from the marine sponge Petrosia species. J. Nat. Prod. 64, 46-53. https://doi.org/10.1021/np000252d
  12. Montalvo, N. F., Davis, J., Vicente, J., Pittiglio, R., Ravel, J., and Hill, R. T. 2014. Integration of culture- based and molecular analysis of a complex sponge-associated bacterial community. PloS one. 9, e90517. https://doi.org/10.1371/journal.pone.0090517
  13. Nishimura, S., Matsunaga, S., Shibazaki, M., Suzuki, K., Harada, N., Naoki, H., and Fusetani, N. 2002. Corticatic acids D and E, polyacetylenic geranylgeranyl transferase type I inhibitors, from the marine sponge Petrosia corticata. J. Nat. Prod. 65, 1353-1356. https://doi.org/10.1021/np020080f
  14. Noda, A., Sakai, E., Kato, H., Losung, F., Mangindaan, R. E., de Voogd, N. J., Yokosawa, H., and Tsukamoto, S. 2015. Strongylophorines, meroditerpenoids from the marine sponge Petrosia corticata, function as proteasome inhibitors. Bioorg. Med. Chem. Lett. 25, 2650-2653. https://doi.org/10.1016/j.bmcl.2015.04.075
  15. Rodrigues, D. F., da C Jesus, E., Ayala-del-Rio, H. L., Pellizari, V. H., Gilichinsky, D., Sepulveda-Torres, L., and Tiedje, J. M. 2009. Biogeography of two cold-adapted genera: Psychrobacter and Exiguobacterium. ISME. J. 3, 658-665. https://doi.org/10.1038/ismej.2009.25
  16. Santos, O. C. S., Soares, A. R., Machado, F. L. S., Romanos, M. T. V., Muricy, G., Giambiagi‐deMarval, M., and Laport, M. S. 2015. Investigation of biotechnological potential of sponge‐associated bacteria collected in Brazilian coast. Lett. Appl. Microbiol. 60, 140-147. https://doi.org/10.1111/lam.12347
  17. Sasaki, S., Tozawa, T., Van Wagoner, R. M., Ireland, C. M., Harper, M. K., and Satoh, T. 2011. Strongylophorine-8, a pro-electrophilic compound from the marine sponge Petrosia (Strongylophora) corticata, provides neuroprotection through Nrf2/ARE pathway. Biochem. Biophys. Res. Commun. 415, 6-10. https://doi.org/10.1016/j.bbrc.2011.09.114
  18. Sun, W., Zhang, F., He, L., Karthik, L., and Li, Z. 2015. Actinomycetes from the South China Sea sponges: isolation, diversity, and potential for aromatic polyketides discovery. Front. Microbiol. 6, doi: 10.3389/fmicb.2015.01048
  19. Takada, K., Okada, S., and Matsunaga, S. 2014. Structural reappraisal of corticatic acids, biologically active linear polyacetylenes, from a marine sponge of the genus Petrosia. Fish. Sci. 80, 1057-1064. https://doi.org/10.1007/s12562-014-0776-0
  20. Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
  21. Taylor, M. W., Schupp, P. J., De Nys, R., Kjelleberg, S., and Steinberg, P. D. 2005. Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ. Microbiol. 7, 419-433. https://doi.org/10.1111/j.1462-2920.2004.00711.x
  22. Thoms, C., Horn, M., Wagner, M., Hentschel, U., and Proksch, P. 2003. Monitoring microbial diversity and natural product profiles of the sponge Aplysina cavernicola following transplantation. Mar. Biol. 142, 685-692. https://doi.org/10.1007/s00227-002-1000-9
  23. Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  24. Wang, G. 2006. Diversity and biotechnological potential of the sponge-associated microbial consortia. J. Ind. Microbiol. Biotechnol. 33, 545-551. https://doi.org/10.1007/s10295-006-0123-2
  25. Webster, N. S., Cobb, R. E., and Negri, A. P. 2008. Temperature thresholds for bacterial symbiosis with a sponge. ISME J. 2, 830-842. https://doi.org/10.1038/ismej.2008.42
  26. Webster, N. S., Negri, A. P., Munro, M. M., and Battershill, C. N. 2004. Diverse microbial communities inhabit Antarctic sponges. Environ. Microbiol. 6, 288-300. https://doi.org/10.1111/j.1462-2920.2004.00570.x
  27. White, J. R., Patel, J., Ottesen, A., Arce, G., Blackwelder, P., and Lopez, J. V. 2012. Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability. PLoS One. 7, e38204. https://doi.org/10.1371/journal.pone.0038204
  28. Yoon, B. J. and Oh, D. C. 2012. Spongiibacterium flavum gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from the marine sponge Halichondria oshoro, and emended descriptions of the genera Croceitalea and Flagellimonas. Int. J. Syst. Evol. Microbiol. 62, 1158-1164. https://doi.org/10.1099/ijs.0.027243-0