References
- Cardenas, C. A., Bell, J. J., Davy, S. K., Hoggard, M., and Taylor, M. W. 2014. Influence of environmental variation on symbiotic bacterial communities of two temperate sponges. FEMS Microbiol. Ecol. 88, 516-527. https://doi.org/10.1111/1574-6941.12317
- Davis, J. W. and Sizemore, R. K. 1982. Incidence of Vibrio species associated with blue crabs (Callinectes sapidus) collected from Galveston Bay, Texas. Appl. Environ. Microbiol. 43, 1092-1097.
- Erwin, P. M., Pita, L., Lopez-Legentil, S., and Turon, X. 2012. Stability of sponge-associated bacteria over large seasonal shifts in temperature and irradiance. Appl. Environ. Microbiol. 78, 7358-7368. https://doi.org/10.1128/AEM.02035-12
- Imhoff, J. F. and Stohr, R. 2003. Sponge-associated bacteria: general overview and special aspects of bacteria associated with Halichondria panicea. In Sponges (Porifera). Springer Berlin Heidelberg. 37, 35-57. https://doi.org/10.1007/978-3-642-55519-0_2
- Jeong, I. H. and Park, J. S. 2012. Phylogenetic analysis of bacterial diversity in the marine sponge, Asteropus simplex, collected from Jeju island. Korean J. Microbiol. 48, 275-283. https://doi.org/10.7845/kjm.2012.064
- Jeong, J. B. and Park, J. S. 2012. Seasonal differences of bacterial communities associated with the marine sponge, Hymeniacidon sinapium. Korean J. Microbiol. 48, 262-269. https://doi.org/10.7845/kjm.2012.063
- Kim, J. S., Lim, Y. J., Im, K. S., Jung, J. H., Shim, C. J., Lee, C. O., Hong, J., and Lee, H. 1999. Cytotoxic polyacetylenes from the marine sponge Petrosia sp. J. Nat. Prod. 62, 554-559. https://doi.org/10.1021/np9803427
- Lee, Y. K., Lee, J. H., and Lee, H. K. 2001. Microbial symbiosis in marine sponges. J. Microbiol. 39, 254-264.
- Li, H. Y., Matsunaga, S., and Fusetani, N. 1994. Corticatic acids A-C, antifungal acetylenic acids from the marine sponge, Petrosia corticata. J. Nat. Prod. 57, 1464-1467. https://doi.org/10.1021/np50112a022
- Li, Z., Hu, Y., Liu, Y., Huang, Y., He, L., and Miao, X. 2007. 16S rDNA clone library-based bacterial phylogenetic diversity associated with three South China Sea sponges. World J. Microbiol. Biotechnol. 23, 1265-1272. https://doi.org/10.1007/s11274-007-9359-x
- Lim, Y. J., Park, H. S., Im, K. S., Lee, C. O., Hong, J., Lee, M. Y., Kim, D. K., and Jung, J. H. 2001. Additional cytotoxic polyacetylenes from the marine sponge Petrosia species. J. Nat. Prod. 64, 46-53. https://doi.org/10.1021/np000252d
- Montalvo, N. F., Davis, J., Vicente, J., Pittiglio, R., Ravel, J., and Hill, R. T. 2014. Integration of culture- based and molecular analysis of a complex sponge-associated bacterial community. PloS one. 9, e90517. https://doi.org/10.1371/journal.pone.0090517
- Nishimura, S., Matsunaga, S., Shibazaki, M., Suzuki, K., Harada, N., Naoki, H., and Fusetani, N. 2002. Corticatic acids D and E, polyacetylenic geranylgeranyl transferase type I inhibitors, from the marine sponge Petrosia corticata. J. Nat. Prod. 65, 1353-1356. https://doi.org/10.1021/np020080f
- Noda, A., Sakai, E., Kato, H., Losung, F., Mangindaan, R. E., de Voogd, N. J., Yokosawa, H., and Tsukamoto, S. 2015. Strongylophorines, meroditerpenoids from the marine sponge Petrosia corticata, function as proteasome inhibitors. Bioorg. Med. Chem. Lett. 25, 2650-2653. https://doi.org/10.1016/j.bmcl.2015.04.075
- Rodrigues, D. F., da C Jesus, E., Ayala-del-Rio, H. L., Pellizari, V. H., Gilichinsky, D., Sepulveda-Torres, L., and Tiedje, J. M. 2009. Biogeography of two cold-adapted genera: Psychrobacter and Exiguobacterium. ISME. J. 3, 658-665. https://doi.org/10.1038/ismej.2009.25
- Santos, O. C. S., Soares, A. R., Machado, F. L. S., Romanos, M. T. V., Muricy, G., Giambiagi‐deMarval, M., and Laport, M. S. 2015. Investigation of biotechnological potential of sponge‐associated bacteria collected in Brazilian coast. Lett. Appl. Microbiol. 60, 140-147. https://doi.org/10.1111/lam.12347
- Sasaki, S., Tozawa, T., Van Wagoner, R. M., Ireland, C. M., Harper, M. K., and Satoh, T. 2011. Strongylophorine-8, a pro-electrophilic compound from the marine sponge Petrosia (Strongylophora) corticata, provides neuroprotection through Nrf2/ARE pathway. Biochem. Biophys. Res. Commun. 415, 6-10. https://doi.org/10.1016/j.bbrc.2011.09.114
- Sun, W., Zhang, F., He, L., Karthik, L., and Li, Z. 2015. Actinomycetes from the South China Sea sponges: isolation, diversity, and potential for aromatic polyketides discovery. Front. Microbiol. 6, doi: 10.3389/fmicb.2015.01048
- Takada, K., Okada, S., and Matsunaga, S. 2014. Structural reappraisal of corticatic acids, biologically active linear polyacetylenes, from a marine sponge of the genus Petrosia. Fish. Sci. 80, 1057-1064. https://doi.org/10.1007/s12562-014-0776-0
- Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729. https://doi.org/10.1093/molbev/mst197
- Taylor, M. W., Schupp, P. J., De Nys, R., Kjelleberg, S., and Steinberg, P. D. 2005. Biogeography of bacteria associated with the marine sponge Cymbastela concentrica. Environ. Microbiol. 7, 419-433. https://doi.org/10.1111/j.1462-2920.2004.00711.x
- Thoms, C., Horn, M., Wagner, M., Hentschel, U., and Proksch, P. 2003. Monitoring microbial diversity and natural product profiles of the sponge Aplysina cavernicola following transplantation. Mar. Biol. 142, 685-692. https://doi.org/10.1007/s00227-002-1000-9
- Thompson, J. D., Higgins, D. G., and Gibson, T. J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Wang, G. 2006. Diversity and biotechnological potential of the sponge-associated microbial consortia. J. Ind. Microbiol. Biotechnol. 33, 545-551. https://doi.org/10.1007/s10295-006-0123-2
- Webster, N. S., Cobb, R. E., and Negri, A. P. 2008. Temperature thresholds for bacterial symbiosis with a sponge. ISME J. 2, 830-842. https://doi.org/10.1038/ismej.2008.42
- Webster, N. S., Negri, A. P., Munro, M. M., and Battershill, C. N. 2004. Diverse microbial communities inhabit Antarctic sponges. Environ. Microbiol. 6, 288-300. https://doi.org/10.1111/j.1462-2920.2004.00570.x
- White, J. R., Patel, J., Ottesen, A., Arce, G., Blackwelder, P., and Lopez, J. V. 2012. Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability. PLoS One. 7, e38204. https://doi.org/10.1371/journal.pone.0038204
- Yoon, B. J. and Oh, D. C. 2012. Spongiibacterium flavum gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from the marine sponge Halichondria oshoro, and emended descriptions of the genera Croceitalea and Flagellimonas. Int. J. Syst. Evol. Microbiol. 62, 1158-1164. https://doi.org/10.1099/ijs.0.027243-0