DOI QR코드

DOI QR Code

핀틀이 적용된 고온 가스 밸브 유동장 해석 기법에 관한 연구

Study on Flow Analysis of Hot Gas Valve with Pintle

  • Lee, Kyungwook (Department of Mechanical Engineering, Hanbat National University) ;
  • Heo, Seonuk (Department of Aerospace Engineering, KAIST) ;
  • Kwon, Sejin (Department of Aerospace Engineering, KAIST) ;
  • Lee, Jongkwang (Department of Mechanical Engineering, Hanbat National University)
  • 투고 : 2015.09.03
  • 심사 : 2015.11.16
  • 발행 : 2015.12.01

초록

고온밸브의 열/유동 해석을 수행함에 있어 난류모델의 선정 및 해석영역의 변화가 해석 결과에 미치는 영향을 확인하기 위한 연구를 수행하였다. 격자 민감도를 확인하기 위해 100,000~1,700,000 개의 격자에 대해 계산을 수행 하였다. 각각의 난류모델 Spallart-Allmaras, RNG $k-{\varepsilon}$, $k-{\omega}$ SST에서 추력 값은 동일하였지만 온도 분포에서 5% 이내의 차이가 존재 하는 것을 확인 할 수 있었다. 계산 영역을 설정함에 있어 외부 대기 영역은 유동과 온도에 큰 영향을 미치지 않았다. 격자수 변화에 따라 추력 값은 동일하였다. 외부 대기 영역이 존재할 때 격자수 변화에 따라 추력 값은 동일하였지만 온도 분포에서는 차이가 존재 하였다.

Numerical simulations of the hot gas valve with a pintle have been conducted in order to investigate the effect of numerical methods and computational domains. The grid sensitivity is checked by varying the grid number from 100,000 to 1,700,000. The existence of ambient region doesn't make the significant differences of the flow-field and the temperature distribution. Three turbulence models are adopted to figure out its influence on the thrust and temperature distribution: Spallart-Allmaras, RNG $k-{\varepsilon}$, $k-{\omega}$ SST. The thrusts of the hot gas valve are almost same in all cases of the simulation, however, there are about 5% difference in the temperature distribution. With the ambient region, the difference are observed in the temperature distribution with respect to the number of grids.

키워드

참고문헌

  1. DACS, World Wide Web location http://missiledefenseadvocacy.org/, Nov. 2015.
  2. Kim, J.K., "Study on the Effects of Pintle Shapes and Position in Nozzle Flow Field, and Thrust in a Solid Rocket Motor with Pintle Nozzle," Ph. D. Thesis, Chungnam National University, 2011.
  3. Park, H.J, "Numerical Study on Dynamic Characteristics of Pintle Nozzle for Variable Thrust," Master's Thesis, Korea Aerospace University, 2011.
  4. Lee, J.H, "A Study of the Static and Dynamic Characteristic of Pintle-perturbed Conical Nozzle Flows," Ph. D. Thesis, Yonsei University, 2012.
  5. Lee, Y.W, "Computational Analysis of Pintle Nozzle for DACS(Divert andAttitude Control System)," Master's Thesis, Chungnam National University, 2010.
  6. Jin, J.K., Ha, D.S. and Oh, S.J., "Experimental Study and Performance Analysis of the Solid Rocket Motor with Pintle Nozzle," Journal of the korean Society of Propulsion Engineers, Vol. 18, No. 5, pp. 19-28, 2014. https://doi.org/10.6108/KSPE.2014.18.5.019
  7. Kam, H.D., Ha, D.S., Park, Y.S., Lee, J.W. and Cho, S.H., "An Ablation Characteristics for the Pintle-nozzle," 42th KSPE Spring Conference, Seoul, Korea, pp. 290-293, May 2014.
  8. Kim, J.K. and Park J.H., "Thrust Modulation Performance Analysis of Pintle-nozzle Motor," Journal of the korean Society for aeronautical and Space Sciences, Vol. 37, No. 4, pp. 392-398, 2009. https://doi.org/10.5139/JKSAS.2009.37.4.392
  9. Lim, S.T., Kim, J.K., Kang, Y.K., Kim, H.W. and Kim, Y.C., "Perspectives on the Hot Component for Rocket Nozzle and Thruster," 31th KSPE Fall Conference, Daejeon, Korea, pp. 67-71, Nov. 2008.
  10. Spalart, P.R. and Allmaras, S.R, "A One-equation Turbulent Model for Aerodynamic Flows," Recherche Aerospatiale, Vol. 1, pp. 5-21, 1994.
  11. Tutorial 5. Nozzle Flow for a Solid- Propellant Rocket, Fluent Inc, Rebanon, U.S.A., 2000.
  12. Dalbello, T., Georgiadis, N.J., Yoder, D.A. and Keith, T.G., "Computational Study of Axisymmetric Off-Design Nozzle Flows," NASA TM-2003-212876, 2003.
  13. Jeon S.E., Park, S.H. and Byun, Y.H., "Effects of Turbulence Model and Eddy Viscosity in Shock-wave/ Boundary Layer Interaction," Journal of Computational Fluid Engineering, Vol. 18, No. 2, pp. 56-65, 2013. https://doi.org/10.6112/kscfe.2013.18.2.056