References
- Akkose, M., Adanur, S., Bayraktar, A. and Dumanoglu, A.A. (2008), "Elasto-plastic earthquake response of arch dams including fluid-structure interaction by the Lagrangian approach", Appl. Math. Model., 32(11), 2396-2412. https://doi.org/10.1016/j.apm.2007.09.014
- Antoniadis, I. and Kanarachos, A. (1998), "Decoupling procedures for fluid-structure interaction problems", Comput. Method. Appl. M., 70(1), 1-25.
- Barrios, H. H., Zavoni, E.H., Alvaro, A. and Rodriguez, A. (2007), "Nonlinear sloshing response of cylindrical tanks subjected to earthquake ground motion", Eng. Struct., 29(12), 3364-3376. https://doi.org/10.1016/j.engstruct.2007.08.023
- Bermudez, A., Duran, R., Muschietti, M.A., Rodriguez, R. and Solomin, J. (1995), "Finite element vibration analysis of fluid-solid systems without spurious modes", SIAM J. Numer. Anal., 32(4), 1280-1295. https://doi.org/10.1137/0732059
- Biswal, K.C., Bhattacharyya, S.K. and Sinha. P.K. (2006), "Non-linear sloshing in partially liquid filled containers with baffles", Int. J. Numer. Meth. Eng., 68(3), 317-337 https://doi.org/10.1002/nme.1709
- Bouaanani, N. and Lu. F.Y. (2009), "Assessment of potential-based fluid finite elements for seismic analysis of dam-reservoir systems", Comput. Struct., 87(3-4), 206-224. https://doi.org/10.1016/j.compstruc.2008.10.006
- Chen, H.C. and Taylor, R.L. (1990), "Vibration analysis of fluid solid systems using a finite element displacement formulation", Int. J. Numer. Method. Eng., 29(4), 683-698. https://doi.org/10.1002/nme.1620290402
- Chopra, A.K. (1967), "Hydrodynamic pressures on dams during earthquakes", J. Eng. Mech. - ASCE, 93(6), 205-223.
- Choun, Y.S. and Yun, C.B. (1996), "Sloshing characteristic in rectangular tanks with a submerged block", Comput. Struct., 61(3), 401-413. https://doi.org/10.1016/0045-7949(96)00084-3
- Chwang, A.T. (1978), "Hydrodynamic pressure on sloping dams during earthquakes. Part - 2.Exact theory", J. Fluid Mech., 87(2), 343-348. https://doi.org/10.1017/S0022112078001640
- Gill, S. (1951), "A process for the step-by-step integration of differential equations in an automatic digital computing machine", Proceedings of the Cambridge Philosophical Society, 47(1), 96-108. https://doi.org/10.1017/S0305004100026414
- Gogoi, I. and Maity, D. (2005), "Seismic safety of aged concrete gravity dams considering fluid-structure interaction", J. Earthq. Eng., 9(5), 1-20.
- Hua, C.W., Fuh, C.B. and Kan. H.T. (2013), "Hydrodynamic forces induced by transient sloshing in a 3D rectangular tank due to oblique horizontal excitation", J. Comput. Math. Appl., 65(8), 1163-1186. https://doi.org/10.1016/j.camwa.2013.02.012
- Kassiotis, C., Ibrahimbegovic, A. and Matthies, H. (2010), "Partitioned solution to fluid-structure interaction problem in application to free-surface flow", Eur. J. Mech. Part B: Fluids, 29(6), 510-521. https://doi.org/10.1016/j.euromechflu.2010.07.003
- Kassiotis, C., Ibrahimbegovic, A., Niekamp, R. and Matthies, H. (2011a), "Partitioned solution to nonlinear fluid-structure interaction problems. Part I: implicit coupling algorithms and stability proof", Comput. Mech., 47, 305-323. https://doi.org/10.1007/s00466-010-0545-6
- Kassiotis, C., Ibrahimbegovic, A., Niekamp, R. and Matthies, H. (2011b), "Partitioned solution to nonlinear fluid-structure interaction problems. Part II: CTL based software implementation with nested parallelization", Comput. Mech., 47, 335-357.
- Lotfi, V. (2004), "Frequency domain analysis of concrete gravity dams by decoupled modal approach", Dam Eng., 15(2), 141-165.
- Maity, D. and Bhattacharyya, S.K. (1997), "Finite element analysis of fluid-structure system for small fluid displacement", Int. J. Struct., 17, 1-18.
- Maity, D. and Bhattacharyya, S.K. (2003), "A parametric study on fluid-structure interaction problems", J. Sound Vib., 263(4), 917-935. https://doi.org/10.1016/S0022-460X(02)01079-9
- Olson, L.G. and Bathe, K.J. (1983), "A study of displacement-based fluid finite elements for calculating frequencies of fluid and fluid-structure systems", Nuclear Eng. Des., 76(2), 137-151. https://doi.org/10.1016/0029-5493(83)90130-9
- Onate, E., Garcia, J., Idelsohn, R. and Delpin, S. (2006), "Finite calculus formulations for finite element analysis of incompressible flows. Eulerian, ALE and Lagrangian approaches", Comput. Method. Appl. M., 195(23-24), 3001-3037. https://doi.org/10.1016/j.cma.2004.10.016
- Pal, P. and Bhattacharyya, S.K. (2013), "Slosh dynamics of liquid-filled composite containers: A two dimensional meshless local Petrov-Galerkin approach", J. Fluid. Struct., 39, 60-75. https://doi.org/10.1016/j.jfluidstructs.2013.02.002
- Pani, P.K. and Bhattacharyy, S.K. (2007), "Fluid-structure interaction effects on dynamic pressure of a rectangular lock-gate", J. Finite Elem. Anal. Des., 43(10), 739-748. https://doi.org/10.1016/j.finel.2007.03.003
- Panigrahy, P.K., Saha, U.K. and Maity. D. (2009), "Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks", J. Ocean Eng., 36(3-4), 213-222. https://doi.org/10.1016/j.oceaneng.2008.11.002
- Ralston, A. andWilf, H.S. (1965), Mathematical Models for Digital Computers, Wiley1, New York.
- Sami, A. and Lotfi, V. (2007), "Comparison of coupled and decoupled modal approaches in seismic analysis of concrete gravity dams in time domain", Finite Elem. Anal. Des., 43(13), 1003- 1012. https://doi.org/10.1016/j.finel.2007.06.015
- Singh, R.K., Kant, T. and Kakodkar, A. (1991), "Coupled shell-fluid interaction problems with degenerate shell and three-dimensional fluid elements", Comput. Struct., 38(5-6), 515-528. https://doi.org/10.1016/0045-7949(91)90003-5
- Tung, C.C. (1979), "Hydrodynamic forces on submerged vertical circular cylindrical tanks underground excitation", Appl. Ocean Res., 1(2), 75-78. https://doi.org/10.1016/0141-1187(79)90020-8
- Williams, A.N. and Moubayed, W.I. (1990), "Earthquake-induced hydrodynamic pressures on submerged cylindrical storage tanks", J. Ocean Eng., 17(3), 181-199. https://doi.org/10.1016/0029-8018(90)90002-N
- Zienkiewicz, O.C. and Newton, R.E. (1969), "Coupled vibration of a structure submerged in a compressible Fluid", Proceedings of the International Symposium on Finite Element Techniques, Stuttgart.
Cited by
- Forced vibration of the hydro-elastic system consisting of the orthotropic plate, compressible viscous fluid and rigid wall vol.8, pp.3, 2015, https://doi.org/10.12989/csm.2019.8.3.199
- Fluid flow profile in the "orthotropic plate+compressible viscous fluid+rigid wall" system under the action of the moving load on the plate vol.9, pp.3, 2015, https://doi.org/10.12989/csm.2020.9.3.289