DOI QR코드

DOI QR Code

Social Network Based Music Recommendation System

소셜네트워크 기반 음악 추천시스템

  • Received : 2015.09.24
  • Accepted : 2015.10.22
  • Published : 2015.12.31

Abstract

Mass multimedia contents are shared through various social media servies including social network service. As social network reveals user's current situation and interest, highly satisfactory personalized recommendation can be made when such features are applied to the recommendation system. In addition, classifying the music by emotion and using analyzed information about user's recent emotion or current situation by analyzing user's social network, it will be useful upon recommending music to the user. In this paper, we propose a music recommendation method that makes an emotion model to classify the music, classifies the music according to the emotion model, and extracts user's current emotional state represented on the social network to recommend music, and evaluates the validity of our method through experiments.

소셜 네트워크를 비롯해 다양한 소셜 미디어 서비스들에서 대량의 멀티미디어 콘텐츠들이 공유되고 있다. 소셜 네트워크에는 사용자의 현재 상황과 관심사가 드러나기 때문에 이러한 특징들을 추천시스템에 적용한다면 만족도가 높은 개인화된 추천이 가능할 것이다. 또한 음악을 감정에 따라 분류하고 사용자의 소셜 네트워크를 분석해 사용자가 최근 느끼고 있는 감정이나 현재 상황에 대해 분석한 정보를 이용한다면 사용자의 음악을 추천할 때에 유용할 것이다. 본 논문에서는 음악을 분류하기 위한 감정 모델을 만들고, 감정모델에 따라 음악을 분류하여 소셜 네트워크에 나타나는 사용자의 현재 감정 상태를 추출하여 음악추천을 하는 방법을 제안하고 실험을 통해 제안한 방법의 유효성을 검증한다.

Keywords

References

  1. Young-Sung Shin, Young-Man Oh, Byeong-Seok Oh, Hyeong-il Kim, and Jae-woo Chang, "An Expert Recommendation Technique using Hybrid Collaborative Filtering in SNS", Database Society, p3, KIISE, 2012. http://www.dbsociety.or.kr/06/db_articles/201208/201208-01.pdf?PHPSESSID=7bad29fddf3a89b22f45325a8376f926
  2. Hong-gu Choi andEenjun Hwang, "Emotion-based Music Recommendation System based on Twitter Document Analysis", Journal of KIISE: Computing Practices and Letters 18(11), 2012.11, 762-767. http://www.dbpia.co.kr/Article/NODE02033302
  3. N. A. Diakopoulos and D. A. Shamma,"Characterizing debate performance via aggregated twitter sentiment", In CHI'10, pages 1195-1198. ACM, 2010. http://doi.acm.org/10.1145/1753326.1753504.
  4. A. Tumasjan, T.O. Sprenger, P. G. Sandner, and I. M. Welpe,"Predicting eletions with twitter: What 140 characters reveal about political sentiment", In ICWSM'10, pages 178-185, 2010. https://www.aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/download/1441/1852
  5. A. Bifet and E. Frank,"Sentiment knowledge discovery in twitter streaming data", In DS'10, ages 1-15, Berlin, Heidelberg, 2010. Springer-Verlag. http://dl.acm.org/citation.cfm?id=1927301
  6. J. Bollen, H. Mao, and A. Pepe, "Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena", In ICWSM'11, 2011. https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/2826
  7. B. I'Connor, R. Balasubramanyan, B. R. Routledge, and N. A. Smith,"From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series", In ICWSM'10, 2010. http://aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/view/1536
  8. M. Thelwall, K. Buckley, and G. Paltoglou, "Sentiment in twitter events", Journal of the American Society for Information Science and Technology, 2011. http://dx.doi.org/10.1002/asi.21462
  9. Yi-Hsuan Yang and Homer H., Chen, "Machine Recognition of Music Emotion: A Review", TIST, May. http://dx.doi.org/10.1145/2168752.2168754
  10. Karam Byun and Moo Young Kim, "Music Genre/Mood Classification for Music Recommendation", THE INSTITUTE OF ELECTRONICS ENGINEERS OF KOREA. 2013.7. http://www.dbpia.co.kr/Article/NODE02242900
  11. Yu-Ching Lin, Yi-Hsuan Yang and Homer H. Chen, "Exploiting Online Music Tags for Music Emotion Classification", TOMM, October 2011. http://dx.doi.org/10.1145/2037676.2037683
  12. R. E. Thayer, "The Biopsychology of Mood and Arousal," New York: Oxford University Press, 1989.
  13. Bradley, M. M., & Lang, P. J., "Affective norms for English words (ANEW): Instruction manual and affective ratings," (Tech. Rep. No. C-1)
  14. WordNet, http://wordnet.princeton.edu/
  15. Chih-Ming Chen, Ming-Feng Tsai et-al., "Music Recommendation Based on Multiple ContextualSimilarity Information", IEEE/WIC/ACM. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6689995

Cited by

  1. A Novel Emotion-Aware Hybrid Music Recommendation Method Using Deep Neural Network vol.10, pp.15, 2015, https://doi.org/10.3390/electronics10151769