References
- Greenlee RT, Murray T, Bolden S, Wingo PA. Cancer statistics, 2000. CA Cancer J Clin 2000;50:7-33 https://doi.org/10.3322/canjclin.50.1.7
- Fry WA, Menck HR, Winchester DP. The National Cancer Data Base report on lung cancer. Cancer 1996;77:1947-1955 https://doi.org/10.1002/(SICI)1097-0142(19960501)77:9<1947::AID-CNCR27>3.0.CO;2-Z
- Flehinger BJ, Kimmel M, Melamed MR. The effect of surgical treatment on survival from early lung cancer. Implications for screening. Chest 1992;101:1013-1018 https://doi.org/10.1378/chest.101.4.1013
- Melamed MR, Flehinger BJ, Zaman MB. Impact of early detection on the clinical course of lung cancer. Surg Clin North Am 1987;67:909-924 https://doi.org/10.1016/S0039-6109(16)44329-X
- Nesbitt JC, Putnam JB Jr, Walsh GL, Roth JA, Mountain CF. Survival in early-stage non-small cell lung cancer. Ann Thorac Surg 1995;60:466-472 https://doi.org/10.1016/0003-4975(95)00169-L
- Shah R, Sabanathan S, Richardson J, Mearns AJ, Goulden C. Results of surgical treatment of stage I and II lung cancer. J Cardiovasc Surg (Torino) 1996;37:169-172
- Evans SH, Davis R, Cooke J, Anderson W. A comparison of radiation doses to the breast in computed tomographic chest examinations for two scanning protocols. Clin Radiol 1989;40:45-46 https://doi.org/10.1016/S0009-9260(89)80021-2
- Lenzen H, Roos N, Diederich S, Meier N. [Radiation exposure in low dose computerized tomography of the thorax]. Radiologe 1996;36:483-488 https://doi.org/10.1007/s001170050101
- Parry RA, Glaze SA, Archer BR. The AAPM/RSNA physics tutorial for residents. Typical patient radiation doses in diagnostic radiology. Radiographics 1999;19:1289-1302 https://doi.org/10.1148/radiographics.19.5.g99se211289
- Van Unnik JG, Broerse JJ, Geleijns J, Jansen JT, Zoetelief J, Zweers D. Survey of CT techniques and absorbed dose in various Dutch hospitals. Br J Radiol 1997;70:367-371 https://doi.org/10.1259/bjr.70.832.9166072
- Wall BF, Hart D. Revised radiation doses for typical X-ray examinations. Report on a recent review of doses to patients from medical X-ray examinations in the UK by NRPB. National Radiological Protection Board. Br J Radiol 1997;70:437-439 https://doi.org/10.1259/bjr.70.833.9227222
- Gartenschläger M, Schweden F, Gast K, Westermeier T, Kauczor H, von Zitzewitz H, et al. Pulmonary nodules: detection with low-dose vs conventional-dose spiral CT. Eur Radiol 1998;8:609-614 https://doi.org/10.1007/s003300050445
- Henschke CI, Yankelevitz DF, McCauley DI, Libby DM, Pasmantier MW, Smith JP. Guidelines for the use of spiral computed tomography in screening for lung cancer. Eur Respir J Suppl 2003;39:45s-51s
- Rusinek H, Naidich DP, McGuinness G, Leitman BS, McCauley DI, Krinsky GA, et al. Pulmonary nodule detection: low-dose versus conventional CT. Radiology 1998;209:243-249 https://doi.org/10.1148/radiology.209.1.9769838
- Diederich S, Lenzen H, Windmann R, Puskas Z, Yelbuz TM, Henneken S, et al. Pulmonary nodules: experimental and clinical studies at low-dose CT. Radiology 1999;213:289-298 https://doi.org/10.1148/radiology.213.1.r99oc29289
- National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 2011;365:395-409 https://doi.org/10.1056/NEJMoa1102873
- Brenner DJ, Elliston CD. Estimated radiation risks potentially associated with full-body CT screening. Radiology 2004;232:735-738 https://doi.org/10.1148/radiol.2323031095
- Brenner DJ, Hall EJ. Computed tomography--an increasing source of radiation exposure. N Engl J Med 2007;357:2277-2284 https://doi.org/10.1056/NEJMra072149
- Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 2009;193:764-771 https://doi.org/10.2214/AJR.09.2397
- Kalra MK, Maher MM, Sahani DV, Blake MA, Hahn PF, Avinash GB, et al. Low-dose CT of the abdomen: evaluation of image improvement with use of noise reduction filters pilot study. Radiology 2003;228:251-256 https://doi.org/10.1148/radiol.2281020693
- Pontana F, Duhamel A, Pagniez J, Flohr T, Faivre JB, Hachulla AL, et al. Chest computed tomography using iterative reconstruction vs filtered back projection (Part 2): image quality of low-dose CT examinations in 80 patients. Eur Radiol 2011;21:636-643 https://doi.org/10.1007/s00330-010-1991-4
- Pontana F, Pagniez J, Flohr T, Faivre JB, Duhamel A, Remy J, et al. Chest computed tomography using iterative reconstruction vs filtered back projection (Part 1): evaluation of image noise reduction in 32 patients. Eur Radiol 2011;21:627-635 https://doi.org/10.1007/s00330-010-1990-5
- Prakash P, Kalra MK, Digumarthy SR, Hsieh J, Pien H, Singh S, et al. Radiation dose reduction with chest computed tomography using adaptive statistical iterative reconstruction technique: initial experience. J Comput Assist Tomogr 2010;34:40-45 https://doi.org/10.1097/RCT.0b013e3181b26c67
- Prakash P, Kalra MK, Ackman JB, Digumarthy SR, Hsieh J, Do S, et al. Diffuse lung disease: CT of the chest with adaptive statistical iterative reconstruction technique. Radiology 2010;256:261-269 https://doi.org/10.1148/radiol.10091487
- Yanagawa M, Honda O, Yoshida S, Kikuyama A, Inoue A, Sumikawa H, et al. Adaptive statistical iterative reconstruction technique for pulmonary CT: image quality of the cadaveric lung on standard- and reduced-dose CT. Acad Radiol 2010;17:1259-1266 https://doi.org/10.1016/j.acra.2010.05.014
- Leipsic J, Nguyen G, Brown J, Sin D, Mayo JR. A prospective evaluation of dose reduction and image quality in chest CT using adaptive statistical iterative reconstruction. AJR Am J Roentgenol 2010;195:1095-1099 https://doi.org/10.2214/AJR.09.4050
- Willemink MJ, de Jong PA, Leiner T, de Heer LM, Nievelstein RA, Budde RP, et al. Iterative reconstruction techniques for computed tomography Part 1: technical principles. Eur Radiol 2013;23:1623-1631 https://doi.org/10.1007/s00330-012-2765-y
- Willemink MJ, Leiner T, de Jong PA, de Heer LM, Nievelstein RA, Schilham AM, et al. Iterative reconstruction techniques for computed tomography part 2: initial results in dose reduction and image quality. Eur Radiol 2013;23:1632-1642 https://doi.org/10.1007/s00330-012-2764-z
- Naidich DP, Marshall CH, Gribbin C, Arams RS, McCauley DI. Low-dose CT of the lungs: preliminary observations. Radiology 1990;175:729-731 https://doi.org/10.1148/radiology.175.3.2343122
- Chakraborty DP, Berbaum KS. Observer studies involving detection and localization: modeling, analysis, and validation. Med Phys 2004;31:2313-2330 https://doi.org/10.1118/1.1769352
- Chakraborty DP. Analysis of location specific observer performance data: validated extensions of the jackknife free-response (JAFROC) method. Acad Radiol 2006;13:1187-1193 https://doi.org/10.1016/j.acra.2006.06.016
- Vikgren J, Zachrisson S, Svalkvist A, Johnsson AA, Boijsen M, Flinck A, et al. Comparison of chest tomosynthesis and chest radiography for detection of pulmonary nodules: human observer study of clinical cases. Radiology 2008;249:1034-1041 https://doi.org/10.1148/radiol.2492080304
- Hirose T, Nitta N, Shiraishi J, Nagatani Y, Takahashi M, Murata K. Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists’ diagnostic accuracy. Acad Radiol 2008;15:1505-1512 https://doi.org/10.1016/j.acra.2008.06.009
- Zachrisson S, Vikgren J, Svalkvist A, Johnsson AA, Boijsen M, Flinck A, et al. Effect of clinical experience of chest tomosynthesis on detection of pulmonary nodules. Acta Radiol 2009;50:884-891 https://doi.org/10.1080/02841850903085584
- Yanagawa M, Honda O, Yoshida S, Ono Y, Inoue A, Daimon T, et al. Commercially available computer-aided detection system for pulmonary nodules on thin-section images using 64 detectors-row CT: preliminary study of 48 cases. Acad Radiol 2009;16:924-933 https://doi.org/10.1016/j.acra.2009.01.030
- Larke FJ, Kruger RL, Cagnon CH, Flynn MJ, McNitt-Gray MM, Wu X, et al. Estimated radiation dose associated with low-dose chest CT of average-size participants in the National Lung Screening Trial. AJR Am J Roentgenol 2011;197:1165-1169 https://doi.org/10.2214/AJR.11.6533
- Boone JM, Strauss KJ, Cody DD, McCollough CH, McNitt-Gray MF, Toth TL, et al. Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations. Report of AAPM Task Group 204. College Park: American Association of Physicists in Medicine, 2011
- Katsura M, Matsuda I, Akahane M, Yasaka K, Hanaoka S, Akai H, et al. Model-based iterative reconstruction technique for ultralow-dose chest CT: comparison of pulmonary nodule detectability with the adaptive statistical iterative reconstruction technique. Invest Radiol 2013;48:206-212
- Neroladaki A, Botsikas D, Boudabbous S, Becker CD, Montet X. Computed tomography of the chest with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination: preliminary observations. Eur Radiol 2013;23:360-366 https://doi.org/10.1007/s00330-012-2627-7
- Wormanns D, Ludwig K, Beyer F, Heindel W, Diederich S. Detection of pulmonary nodules at multirow-detector CT: effectiveness of double reading to improve sensitivity at standard-dose and low-dose chest CT. Eur Radiol 2005;15:14-22 https://doi.org/10.1007/s00330-004-2527-6
- Seltzer SE, Judy PF, Adams DF, Jacobson FL, Stark P, Kikinis R, et al. Spiral CT of the chest: comparison of cine and film-based viewing. Radiology 1995;197:73-78 https://doi.org/10.1148/radiology.197.1.7568857
- Diederich S, Semik M, Lentschig MG, Winter F, Scheld HH, Roos N, et al. Helical CT of pulmonary nodules in patients with extrathoracic malignancy: CT-surgical correlation. AJR Am J Roentgenol 1999;172:353-360 https://doi.org/10.2214/ajr.172.2.9930781
Cited by
- Does the Reporting Quality of Diagnostic Test Accuracy Studies, as Defined by STARD 2015, Affect Citation? vol.17, pp.5, 2016, https://doi.org/10.3348/kjr.2016.17.5.706
- The Impact of Iterative Reconstruction in Low-Dose Computed Tomography on the Evaluation of Diffuse Interstitial Lung Disease vol.17, pp.6, 2015, https://doi.org/10.3348/kjr.2016.17.6.950
- Quantitative and qualitative evaluation of hybrid iterative reconstruction, with and without noise power spectrum models: A phantom study vol.19, pp.3, 2015, https://doi.org/10.1002/acm2.12304
- Effect of an Arm Traction Device on Image Quality and Radiation Exposure during Neck CT: A Prospective Study vol.39, pp.1, 2015, https://doi.org/10.3174/ajnr.a5418
- Pulmonary Emphysema Quantification on Ultra–Low-Dose Computed Tomography Using Model-Based Iterative Reconstruction With or Without Lung Setting vol.42, pp.5, 2015, https://doi.org/10.1097/rct.0000000000000755
- Application of ASiR in combination with noise index in the chest CT examination of preschool-age children vol.124, pp.6, 2015, https://doi.org/10.1007/s11547-018-00983-w
- Detection of pulmonary nodules: a clinical study protocol to compare ultra-low dose chest CT and standard low-dose CT using ASIR-V vol.9, pp.8, 2019, https://doi.org/10.1136/bmjopen-2018-025661
- Clinical value of a new generation adaptive statistical iterative reconstruction (ASIR-V) in the diagnosis of pulmonary nodule in low-dose chest CT vol.92, pp.1103, 2019, https://doi.org/10.1259/bjr.20180909
- Wide-volume versus helical acquisition in unenhanced chest CT: prospective intra-patient comparison of diagnostic accuracy and radiation dose in an ultra-low-dose setting vol.29, pp.12, 2015, https://doi.org/10.1007/s00330-019-06278-6
- Observer Performance for Detection of Pulmonary Nodules at Chest CT over a Large Range of Radiation Dose Levels vol.297, pp.3, 2015, https://doi.org/10.1148/radiol.2020200969