DOI QR코드

DOI QR Code

Whole-Body MRI in Children: Current Imaging Techniques and Clinical Applications

  • Goo, Hyun Woo (Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2015.03.29
  • Accepted : 2015.05.19
  • Published : 2015.09.01

Abstract

Whole-body magnetic resonance imaging (MRI) is increasingly used in children to evaluate the extent and distribution of various neoplastic and non-neoplastic diseases. Not using ionizing radiation is a major advantage of pediatric whole-body MRI. Coronal and sagittal short tau inversion recovery imaging is most commonly used as the fundamental whole-body MRI protocol. Diffusion-weighted imaging and Dixon-based imaging, which has been recently incorporated into whole-body MRI, are promising pulse sequences, particularly for pediatric oncology. Other pulse sequences may be added to increase diagnostic capability of whole-body MRI. Of importance, the overall whole-body MRI examination time should be less than 30-60 minutes in children, regardless of the imaging protocol. Established and potentially useful clinical applications of pediatric whole-body MRI are described.

Keywords

References

  1. Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jurgens H, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol 2001;177:229-236 https://doi.org/10.2214/ajr.177.1.1770229
  2. Goo HW, Choi SH, Ghim T, Moon HN, Seo JJ. Whole-body MRI of paediatric malignant tumours: comparison with conventional oncological imaging methods. Pediatr Radiol 2005;35:766-773 https://doi.org/10.1007/s00247-005-1459-x
  3. Goo HW, Yang DH, Ra YS, Song JS, Im HJ, Seo JJ, et al. Whole-body MRI of Langerhans cell histiocytosis: comparison with radiography and bone scintigraphy. Pediatr Radiol 2006;36:1019-1031 https://doi.org/10.1007/s00247-006-0246-7
  4. Punwani S, Taylor SA, Bainbridge A, Prakash V, Bandula S, De Vita E, et al. Pediatric and adolescent lymphoma: comparison of whole-body STIR half-Fourier RARE MR imaging with an enhanced PET/CT reference for initial staging. Radiology 2010;255:182-190 https://doi.org/10.1148/radiol.09091105
  5. Goo HW. Whole-body MRI of neuroblastoma. Eur J Radiol 2010;75:306-314 https://doi.org/10.1016/j.ejrad.2009.09.014
  6. Chavhan GB, Babyn PS. Whole-body MR imaging in children: principles, technique, current applications, and future directions. Radiographics 2011;31:1757-1772 https://doi.org/10.1148/rg.316115523
  7. Goo HW. Regional and whole-body imaging in pediatric oncology. Pediatr Radiol 2011;41 Suppl 1:S186-S194 https://doi.org/10.1007/s00247-011-2050-2
  8. Goo HW. High field strength magnetic resonance imaging in children. J Korean Med Assoc 2010;53:1093-1102 https://doi.org/10.5124/jkma.2010.53.12.1093
  9. Willinek WA, Gieseke J, Kukuk GM, Nelles M, König R, Morakkabati-Spitz N, et al. Dual-source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0 T: initial clinical experience. Radiology 2010;256:966-975 https://doi.org/10.1148/radiol.10092127
  10. Takahara T, Kwee T, Kibune S, Ochiai R, Sakamoto T, Niwa T, et al. Whole-body MRI using a sliding table and repositioning surface coil approach. Eur Radiol 2010;20:1366-1373 https://doi.org/10.1007/s00330-009-1674-1
  11. Brandão S, Seixas D, Ayres-Basto M, Castro S, Neto J, Martins C, et al. Comparing T1-weighted and T2-weighted three-point Dixon technique with conventional T1-weighted fat-saturation and short-tau inversion recovery (STIR) techniques for the study of the lumbar spine in a short-bore MRI machine. Clin Radiol 2013;68:e617-e623 https://doi.org/10.1016/j.crad.2013.06.004
  12. Costelloe CM, Madewell JE, Kundra V, Harrell RK, Bassett RL Jr, Ma J. Conspicuity of bone metastases on fast Dixon-based multisequence whole-body MRI: clinical utility per sequence. Magn Reson Imaging 2013;31:669-675 https://doi.org/10.1016/j.mri.2012.10.017
  13. Schmidt MA. Phase-uncertainty quality map for two-point Dixon fat-water separation. Phys Med Biol 2011;56:N195-N205 https://doi.org/10.1088/0031-9155/56/18/N02
  14. Pasoglou V, Michoux N, Peeters F, Larbi A, Tombal B, Selleslagh T, et al. Whole-body 3D T1-weighted MR imaging in patients with prostate cancer: feasibility and evaluation in screening for metastatic disease. Radiology 2015;275:155-166 https://doi.org/10.1148/radiol.14141242
  15. Dreizin D, Ahlawat S, Del Grande F, Fayad LM. Gradient-echo in-phase and opposed-phase chemical shift imaging: role in evaluating bone marrow. Clin Radiol 2014;69:648-657 https://doi.org/10.1016/j.crad.2014.01.027
  16. Kwee TC, Takahara T, Vermoolen MA, Bierings MB, Mali WP, Nievelstein RA. Whole-body diffusion-weighted imaging for staging malignant lymphoma in children. Pediatr Radiol 2010;40:1592-1602; quiz 1720-1721 https://doi.org/10.1007/s00247-010-1775-7
  17. Padhani AR, Makris A, Gall P, Collins DJ, Tunariu N, de Bono JS. Therapy monitoring of skeletal metastases with wholebody diffusion MRI. J Magn Reson Imaging 2014;39:1049-1078 https://doi.org/10.1002/jmri.24548
  18. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M. Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 2004;22:275-282
  19. Chen NK, Guidon A, Chang HC, Song AW. A robust multishot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE). Neuroimage 2013;72:41-47 https://doi.org/10.1016/j.neuroimage.2013.01.038
  20. Filli L, Wurnig MC, Luechinger R, Eberhardt C, Guggenberger R, Boss A. Whole-body intravoxel incoherent motion imaging. Eur Radiol 2015 Jan 10 [Epub]. http://dx.doi.org/10.1007/s00330-014-3577-z
  21. Klenk C, Gawande R, Uslu L, Khurana A, Qiu D, Quon A, et al. Ionising radiation-free whole-body MRI versus (18) F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, singlecentre study. Lancet Oncol 2014;15:275-285 https://doi.org/10.1016/S1470-2045(14)70021-X
  22. Sengupta S, Smith DS, Welch EB. Continuously moving table MRI with golden angle radial sampling. Magn Reson Med 2014 Dec 2 [Epub]. http://dx.doi.org/10.1002/mrm.25531
  23. Naguib NN, Bohrt K, Nour-Eldin NE, Schulz B, Tawfik AM, Siebenhandel P, et al. Whole-body MR angiography: first experiences with the new TimCT technology with single contrast injection. J Magn Reson Imaging 2014;39:434-439 https://doi.org/10.1002/jmri.24182
  24. Hong TS, Greer ML, Grosse-Wortmann L, Yoo SJ, Babyn PS. Whole-body MR angiography: initial experience in imaging pediatric vasculopathy. Pediatr Radiol 2011;41:769-778 https://doi.org/10.1007/s00247-010-1958-2
  25. Siegel MJ, Acharyya S, Hoffer FA, Wyly JB, Friedmann AM, Snyder BS, et al. Whole-body MR imaging for staging of malignant tumors in pediatric patients: results of the American College of Radiology Imaging Network 6660 Trial. Radiology 2013;266:599-609 https://doi.org/10.1148/radiol.12112531
  26. Hirsch FW, Sattler B, Sorge I, Kurch L, Viehweger A, Ritter L, et al. PET/MR in children. Initial clinical experience in paediatric oncology using an integrated PET/MR scanner. Pediatr Radiol 2013;43:860-875 https://doi.org/10.1007/s00247-012-2570-4
  27. Schäfer JF, Gatidis S, Schmidt H, Gückel B, Bezrukov I, Pfannenberg CA, et al. Simultaneous whole-body PET/MR imaging in comparison to PET/CT in pediatric oncology: initial results. Radiology 2014;273:220-231 https://doi.org/10.1148/radiol.14131732
  28. Yoo HJ, Lee JS, Lee JM. Integrated whole body MR/PET: where are we? Korean J Radiol 2015;16:32-49 https://doi.org/10.3348/kjr.2015.16.1.32
  29. Atkin KL, Ditchfield MR. The role of whole-body MRI in pediatric oncology. J Pediatr Hematol Oncol 2014;36:342-352 https://doi.org/10.1097/MPH.0000000000000031
  30. Lee E, Goo HW, Lee JY. Age- and gender-specific estimates of cumulative CT dose over 5 years using real radiation dose tracking data in children. Pediatr Radiol 2015 Mar 24 [Epub]. http://dx.doi.org/10.1007/s00247-015-3331-y
  31. Ording Müller LS, Avenarius D, Olsen OE. High signal in bone marrow at diffusion-weighted imaging with body background suppression (DWIBS) in healthy children. Pediatr Radiol 2011;41:221-226 https://doi.org/10.1007/s00247-010-1774-8
  32. Kellenberger CJ, Epelman M, Miller SF, Babyn PS. Fast STIR whole-body MR imaging in children. Radiographics 2004;24:1317-1330 https://doi.org/10.1148/rg.245045048
  33. Littooij AS, Kwee TC, Barber I, Granata C, Vermoolen MA, Enríquez G, et al. Whole-body MRI for initial staging of paediatric lymphoma: prospective comparison to an FDG-PET/ CT-based reference standard. Eur Radiol 2014;24:1153-1165 https://doi.org/10.1007/s00330-014-3114-0
  34. Adams HJ, Kwee TC, Lokhorst HM, Westerweel PE, Fijnheer R, Kersten MJ, et al. Potential prognostic implications of wholebody bone marrow MRI in diffuse large B-cell lymphoma patients with a negative blind bone marrow biopsy. J Magn Reson Imaging 2014;39:1394-1400 https://doi.org/10.1002/jmri.24318
  35. Mueller WP, Melzer HI, Schmid I, Coppenrath E, Bartenstein P, Pfluger T. The diagnostic value of 18F-FDG PET and MRI in paediatric histiocytosis. Eur J Nucl Med Mol Imaging 2013;40:356-363 https://doi.org/10.1007/s00259-012-2278-6
  36. Miettunen PM, Lafay-Cousin L, Guilcher GM, Nettel-Aguirre A, Moorjani V. Widespread osteonecrosis in children with leukemia revealed by whole-body MRI. Clin Orthop Relat Res 2012;470:3587-3595 https://doi.org/10.1007/s11999-012-2579-x
  37. Cai W, Kassarjian A, Bredella MA, Harris GJ, Yoshida H, Mautner VF, et al. Tumor burden in patients with neurofibromatosis types 1 and 2 and schwannomatosis: determination on whole-body MR images. Radiology 2009;250:665-673 https://doi.org/10.1148/radiol.2503080700
  38. Monsalve J, Kapur J, Malkin D, Babyn PS. Imaging of cancer predisposition syndromes in children. Radiographics 2011;31:263-280 https://doi.org/10.1148/rg.311105099
  39. Yang DH, Goo HW. Generalized lymphangiomatosis: radiologic findings in three pediatric patients. Korean J Radiol 2006;7:287-291 https://doi.org/10.3348/kjr.2006.7.4.287
  40. Malattia C, Damasio MB, Madeo A, Pistorio A, Providenti A, Pederzoli S, et al. Whole-body MRI in the assessment of disease activity in juvenile dermatomyositis. Ann Rheum Dis 2014;73:1083-1090
  41. Quijano-Roy S, Avila-Smirnow D, Carlier RY; WB-MRI muscle study group. Whole body muscle MRI protocol: pattern recognition in early onset NM disorders. Neuromuscul Disord 2012;22 Suppl 2:S68-S84 https://doi.org/10.1016/j.nmd.2012.08.003
  42. Axelsen MB, Eshed I, Duer-Jensen A, Moller JM, Pedersen SJ, Ostergaard M. Whole-body MRI assessment of disease activity and structural damage in rheumatoid arthritis: first step towards an MRI joint count. Rheumatology (Oxford) 2014;53:845-853 https://doi.org/10.1093/rheumatology/ket425
  43. McLaughlin PD, Ryan J, Hodnett PA, O'Halloran D, Maher MM. Quantitative whole-body MRI in familial partial lipodystrophy type 2: changes in adipose tissue distribution coincide with biochemical improvement. AJR Am J Roentgenol 2012;199:W602-W606 https://doi.org/10.2214/AJR.11.7058
  44. Fritz J, Tzaribatchev N, Claussen CD, Carrino JA, Horger MS. Chronic recurrent multifocal osteomyelitis: comparison of whole-body MR imaging with radiography and correlation with clinical and laboratory data. Radiology 2009;252:842-851 https://doi.org/10.1148/radiol.2523081335
  45. Falip C, Alison M, Boutry N, Job-Deslandre C, Cotten A, Azoulay R, et al. Chronic recurrent multifocal osteomyelitis (CRMO): a longitudinal case series review. Pediatr Radiol 2013;43:355-375 https://doi.org/10.1007/s00247-012-2544-6
  46. Perez-Rossello JM, Connolly SA, Newton AW, Zou KH, Kleinman PK. Whole-body MRI in suspected infant abuse. AJR Am J Roentgenol 2010;195:744-750 https://doi.org/10.2214/AJR.09.3364
  47. Cha JG, Kim DH, Kim DH, Paik SH, Park JS, Park SJ, et al. Utility of postmortem autopsy via whole-body imaging: initial observations comparing MDCT and 3.0 T MRI findings with autopsy findings. Korean J Radiol 2010;11:395-406 https://doi.org/10.3348/kjr.2010.11.4.395
  48. Ross S, Ebner L, Flach P, Brodhage R, Bolliger SA, Christe A, et al. Postmortem whole-body MRI in traumatic causes of death. AJR Am J Roentgenol 2012;199:1186-1192 https://doi.org/10.2214/AJR.12.8767
  49. Ferreira EC, Brito CC, Domingues RC, Bernardes M, Marchiori E, Gasparetto EL. Whole-body MR imaging for the evaluation of McCune-albright syndrome. J Magn Reson Imaging 2010;31:706-710 https://doi.org/10.1002/jmri.22056
  50. Beck C, Morbach H, Wirth C, Beer M, Girschick HJ. Whole-body MRI in the childhood form of hypophosphatasia. Rheumatol Int 2011;31:1315-1320 https://doi.org/10.1007/s00296-010-1493-3
  51. Rittner RE, Baumann U, Laenger F, Hartung D, Rosenthal H, Hueper K. Whole-body diffusion-weighted MRI in a case of Rosai-Dorfman disease with exclusive multifocal skeletal involvement. Skeletal Radiol 2012;41:709-713 https://doi.org/10.1007/s00256-011-1328-7
  52. Kumar A, Goenka AH, Choudhary A, Sahu JK, Gulati S. Disseminated cysticercosis in a child: whole-body MR diagnosis with the use of parallel imaging. Pediatr Radiol 2010;40:223-227 https://doi.org/10.1007/s00247-009-1438-8

Cited by

  1. Whole-body magnetic resonance imaging in children: technique and clinical applications vol.46, pp.6, 2015, https://doi.org/10.1007/s00247-016-3586-y
  2. Variabilidad en la determinación de fracción grasa muscular en resonancia magnética utilizando la técnica de Dixon vol.22, pp.4, 2015, https://doi.org/10.1016/j.rchira.2016.11.005
  3. Multifocal bone and bone marrow lesions in children — MRI findings vol.47, pp.3, 2017, https://doi.org/10.1007/s00247-016-3737-1
  4. Surveillance Screening in Li-Fraumeni Syndrome: Raising Awareness of False Positives vol.10, pp.4, 2015, https://doi.org/10.7759/cureus.2527
  5. Diffusion‐weighted MRI and intravoxel incoherent motion model for diagnosis of pediatric solid abdominal tumors vol.47, pp.6, 2015, https://doi.org/10.1002/jmri.25901
  6. Medullary Thyroid Carcinoma: An Update on Imaging vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/1893047
  7. Whole‐body MRI of bone marrow: A review vol.50, pp.6, 2015, https://doi.org/10.1002/jmri.26759
  8. Pearls and Pitfalls in Imaging Bone Marrow in Pediatric Patients vol.41, pp.5, 2015, https://doi.org/10.1053/j.sult.2020.05.012
  9. Whole-Body MRI Surveillance of Cancer Predisposition Syndromes: Current Best Practice Guidelines for Use, Performance, and Interpretation vol.215, pp.4, 2015, https://doi.org/10.2214/ajr.19.22399
  10. Current status of MR imaging of juvenile idiopathic arthritis vol.34, pp.6, 2020, https://doi.org/10.1016/j.berh.2020.101629
  11. Whole-body magnetic resonance imaging in children – how and why? A systematic review vol.51, pp.1, 2015, https://doi.org/10.1007/s00247-020-04735-9
  12. Li-Fraumeni Syndrome and Whole-Body MRI Screening: Screening Guidelines, Imaging Features, and Impact on Patient Management vol.216, pp.1, 2015, https://doi.org/10.2214/ajr.20.23008
  13. Medullary thyroid carcinoma in children: current state of the art and future perspectives vol.35, pp.1, 2015, https://doi.org/10.1515/jpem-2021-0502