DOI QR코드

DOI QR Code

Relationship between Right Ventricular Longitudinal Strain, Invasive Hemodynamics, and Functional Assessment in Pulmonary Arterial Hypertension

  • Park, Jae-Hyeong (Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic) ;
  • Kusunose, Kenya (Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic) ;
  • Kwon, Deborah H. (Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic) ;
  • Park, Margaret M. (Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic) ;
  • Erzurum, Serpil C. (Department of Pathobiology, Lerner Research Institute, Cleveland Clinic) ;
  • Thomas, James D. (Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic) ;
  • Grimm, Richard A. (Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic) ;
  • Griffin, Brian P. (Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic) ;
  • Marwick, Thomas H. (Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic) ;
  • Popovic, Zoran B. (Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic)
  • Received : 2015.02.16
  • Accepted : 2015.04.17
  • Published : 2015.09.30

Abstract

Background and Objectives: Right ventricular longitudinal strain (RVLS) is a new parameter of RV function. We evaluated the relationship of RVLS by speckle-tracking echocardiography with functional and invasive parameters in pulmonary arterial hypertension (PAH) patients. Subjects and Methods: Thirty four patients with World Health Organization group 1 PAH (29 females, mean age $45{\pm}13$ years old). RVLS were analyzed with velocity vector imaging. Results: Patients with advanced symptoms {New York Heart Association (NYHA) functional class III/IV} had impaired RVLS in global RV (RVLSglobal, $-17{\pm}5$ vs.$ -12{\pm}3%$, p<0.01) and RV free wall (RVLSFW, $-19{\pm}5$ vs. -$14{\pm}4%$, p<0.01 to NYHA class I/II). Baseline RVLSglobal and RVLSFW showed significant correlation with 6-minute walking distance (r=-0.54 and r=-0.57, p<0.01 respectively) and logarithmic transformation of brain natriuretic peptide concentration (r=0.65 and r=0.65, p<0.01, respectively). These revealed significant correlations with cardiac index (r=-0.50 and r=-0.47, p<0.01, respectively) and pulmonary vascular resistance (PVR, r=0.45 and r=0.45, p=0.01, respectively). During a median follow-up of 33 months, 25 patients (74%) had follow-up examinations. Mean pulmonary arterial pressure (mPAP,$ 54{\pm}13$ to $46{\pm}16mmHg$, p=0.03) and PVR ($11{\pm}5$ to $6{\pm}2$ wood units, p<0.01) were significantly decreased with pulmonary vasodilator treatment. RVLSglobal ($-12{\pm}5$ to $-16{\pm}5%$, p<0.01) and RVLSFW ($-14{\pm}5$ to $-18{\pm}5%$, p<0.01) were significantly improved. The decrease of mPAP was significantly correlated with improvement of RVLSglobal (r=0.45, p<0.01) and RVLSFW (r=0.43, p<0.01). The PVR change demonstrated significant correlation with improvement of RVLSglobal (r=0.40, p<0.01). Conclusion: RVLS correlates with functional and invasive hemodynamic parameters in PAH patients. Decrease of mPAP and PVR as a result of treatment was associated with improvement of RVLS.

Keywords

References

  1. Humbert M, Sitbon O, Simonneau G. Treatment of pulmonary arterial hypertension. N Engl J Med 2004;351:1425-36. https://doi.org/10.1056/NEJMra040291
  2. Bogaard HJ, Abe K, Vonk Noordegraaf A, Voelkel NF. The right ventricle under pressure: cellular and molecular mechanisms of right-heart failure in pulmonary hypertension. Chest 2009;135:794-804. https://doi.org/10.1378/chest.08-0492
  3. D'Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 1991;115:343-9. https://doi.org/10.7326/0003-4819-115-5-343
  4. Barst RJ, Rubin LJ, Long WA, et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N Engl J Med 1996;334:296-301. https://doi.org/10.1056/NEJM199602013340504
  5. Channick RN, Simonneau G, Sitbon O, et al. Effects of the dual endothelin- receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet 2001;358:1119-23. https://doi.org/10.1016/S0140-6736(01)06250-X
  6. Sachdev A, Villarraga HR, Frantz RP, et al. Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest 2011;139:1299-309. https://doi.org/10.1378/chest.10-2015
  7. Brown SB, Raina A, Katz D, Szerlip M, Wiegers SE, Forfia PR. Longitudinal shortening accounts for the majority of right ventricular contraction and improves after pulmonary vasodilator therapy in normal subjects and patients with pulmonary arterial hypertension. Chest 2011;140:27-33. https://doi.org/10.1378/chest.10-1136
  8. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 2010;23:685-713. https://doi.org/10.1016/j.echo.2010.05.010
  9. Giusca S, Dambrauskaite V, Scheurwegs C, et al. Deformation imaging describes right ventricular function better than longitudinal displacement of the tricuspid ring. Heart 2010;96:281-8. https://doi.org/10.1136/hrt.2009.171728
  10. Jamal F, Bergerot C, Argaud L, Loufouat J, Ovize M. Longitudinal strain quantitates regional right ventricular contractile function. Am J Physiol Heart Circ Physiol 2003;285:H2842-7. https://doi.org/10.1152/ajpheart.00218.2003
  11. Verhaert D, Mullens W, Borowski A, et al. Right ventricular response to intensive medical therapy in advanced decompensated heart failure. Circ Heart Fail 2010;3:340-6. https://doi.org/10.1161/CIRCHEARTFAILURE.109.900134
  12. Pirat B, McCulloch ML, Zoghbi WA. Evaluation of global and regional right ventricular systolic function in patients with pulmonary hypertension using a novel speckle tracking method. Am J Cardiol 2006;98:699-704. https://doi.org/10.1016/j.amjcard.2006.03.056
  13. Galie N, Hoeper MM, Humbert M, et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J 2009;30:2493-537. https://doi.org/10.1093/eurheartj/ehp297
  14. Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440-63. https://doi.org/10.1016/j.echo.2005.10.005
  15. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002;166:111-7. https://doi.org/10.1164/ajrccm.166.1.at1102
  16. Yuan XP, Bach D, Skanes A, Drangova M. Assessment of intra- and interobserver variability of pulmonary vein measurements from CT angiography. Acad Radiol 2004;11:1211-8. https://doi.org/10.1016/j.acra.2004.07.016
  17. Puwanant S, Park M, Popović ZB, et al. Ventricular geometry, strain, and rotational mechanics in pulmonary hypertension. Circulation 2010;121:259-66. https://doi.org/10.1161/CIRCULATIONAHA.108.844340
  18. Fine NM, Chen L, Bastiansen PM, et al. Outcome prediction by quantitative right ventricular function assessment in 575 subjects evaluated for pulmonary hypertension. Circ Cardiovasc Imaging 2013;6:711-21. https://doi.org/10.1161/CIRCIMAGING.113.000640
  19. Parent F, Bachir D, Inamo J, et al. A hemodynamic study of pulmonary hypertension in sickle cell disease. N Engl J Med 2011;365:44-53. https://doi.org/10.1056/NEJMoa1005565
  20. Rich S, Kaufmann E, Levy PS. The effect of high doses of calciumchannel blockers on survival in primary pulmonary hypertension. N Engl J Med 1992;327:76-81. https://doi.org/10.1056/NEJM199207093270203
  21. Hoeper MM, Lee SH, Voswinckel R, et al. Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J Am Coll Cardiol 2006;48:2546-52. https://doi.org/10.1016/j.jacc.2006.07.061
  22. Beygui F, Furber A, Delépine S, et al. Routine breath-hold gradient echo MRI-derived right ventricular mass, volumes and function: accuracy, reproducibility and coherence study. Int J Cardiovasc Imaging 2004;20:509-16. https://doi.org/10.1007/s10554-004-1097-7
  23. Torbicki A. Cardiac magnetic resonance in pulmonary arterial hypertension: a step in the right direction. Eur Heart J 2007;28:1187-9. https://doi.org/10.1093/eurheartj/ehm074
  24. Vonk Noordegraaf A, Galie N. The role of the right ventricle in pulmonary arterial hypertension. Eur Respir Rev 2011;20:243-53. https://doi.org/10.1183/09059180.00006511
  25. Haeck ML, Scherptong RW, Marsan NA, et al. Prognostic value of right ventricular longitudinal peak systolic strain in patients with pulmonary hypertension. Circ Cardiovasc Imaging 2012;5:628-36. https://doi.org/10.1161/CIRCIMAGING.111.971465
  26. Miyamoto S, Nagaya N, Satoh T, et al. Clinical correlates and prognostic significance of six-minute walk test in patients with primary pulmonary hypertension. Comparison with cardiopulmonary exercise testing. Am J Respir Crit Care Med 2000;161(2 Pt 1):487-92. https://doi.org/10.1164/ajrccm.161.2.9906015
  27. Galiè N, Manes A, Negro L, et al. A meta-analysis of randomized controlled trials in pulmonary arterial hypertension. Eur Heart J 2009;30:394-403.
  28. Gomberg-Maitland M, Dufton C, Oudiz RJ, Benza RL. Compelling evidence of long-term outcomes in pulmonary arterial hypertension? A clinical perspective. J Am Coll Cardiol 2011;57:1053-61. https://doi.org/10.1016/j.jacc.2010.11.020

Cited by

  1. Diagnostic and prognostic value of right ventricular strain in patients with pulmonary arterial hypertension and relatively preserved functional capacity studied with echocardiography and magnetic res vol.33, pp.1, 2015, https://doi.org/10.1007/s10554-016-0966-1
  2. Optimal right heart filling pressure in acute respiratory distress syndrome determined by strain echocardiography vol.34, pp.6, 2017, https://doi.org/10.1111/echo.13546
  3. Evaluation of the right ventricle by echocardiography: particularities and major challenges vol.16, pp.4, 2018, https://doi.org/10.1080/14779072.2018.1449646
  4. Echocardiography vs cardiac magnetic resonance imaging assessment of the systemic right ventricle for patients with d‐transposition of the great arteries status post atrial switch vol.14, pp.6, 2019, https://doi.org/10.1111/chd.12861
  5. Ventricular systolic dysfunction with and without altered myocardial contractility: Clinical value of echocardiography for diagnosis and therapeutic decision-making vol.327, pp.None, 2015, https://doi.org/10.1016/j.ijcard.2020.11.068