DOI QR코드

DOI QR Code

Assessment of Myocardial Collateral Blood Flow with Contrast Echocardiography

  • Kaul, Sanjiv (Knight Cardiovascular Institute, Oregon Health & Science University)
  • Received : 2015.02.27
  • Accepted : 2015.04.02
  • Published : 2015.09.30

Abstract

Humans have pre-formed collateral vessels that enlarge with ischemia. In addition, new vessels can be formed within ischemic zones from pre-formed endocardial arcades of vessels providing rich collateral flow. Collateral flow under resting conditions (if >25% of normal) is enough to maintain myocardial viability, but may be insufficient to prevent myocardial ischemia under stress. Coronary angiography is a poor tool for collateral flow assessment. Myocardial contrast echocardiography is arguably the gold standard for experimental and clinical measurement of collateral flow. This review describes several experimental and clinical studies that highlight the importance of the collateral circulation in coronary artery disease.

Keywords

References

  1. Lower R. Tractatus de corde item de motu et colore sanguinis et chli in eum transitu. In: with introduction and translation by Franklin KJ. Ealry Science in Oxford, Vol. 9. . Oxford: Oxford University Press; 1932. p.13.
  2. Gross L, Kugel MA. The arterial blood vascular distribution to the left and right ventricles of the human heart. Am Heart J 1933;9:165-77. https://doi.org/10.1016/S0002-8703(33)90712-7
  3. Fulton WF. Anastomotic enlargement and ischemic myocardial damage. Br Heart J 1964;26:1-15. https://doi.org/10.1136/hrt.26.1.1
  4. Baroldi G, Scomazzoni G. Coronary circulation in the normal and pathological heart. Washington, D.C.: Armed Forces Institute of Pathology. 1967.
  5. Schaper W. Collateral Circulation: past and present. Basic Res Cardiol 2009;104:5-21. https://doi.org/10.1007/s00395-008-0760-x
  6. Cohen MV. Coronary collaterals: clinical & experimental observations. Mount Kisco, N.Y. : Futura Pub. Co. 1985.
  7. Kaul S. Myocardial contrast echocardiography: 15 years of research and development. Circulation 1997;96:3745-60. https://doi.org/10.1161/01.CIR.96.10.3745
  8. Kaul S. Myocardial contrast echocardiography: a 25-year retrospective. Circulation 2008;118:291-308. https://doi.org/10.1161/CIRCULATIONAHA.107.747303
  9. Sabia PJ, Powers ER, Ragosta M, Sarembock IJ, Burwell LR, Kaul S. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med 1992;327:1825-31. https://doi.org/10.1056/NEJM199212243272601
  10. Sabia PJ, Powers ER, Jayaweera AR, Ragosta M, Kaul S. Functional significance of collateral blood flow in patients with recent acute myocardial infarction. A study using myocardial contrast echocardiography. Circulation 1992;85:2080-9. https://doi.org/10.1161/01.CIR.85.6.2080
  11. Kaul S, Gillam LD, Weyman AE. Contrast echocardiography in acute myocardial ischemia. II. The effect of site of injection of contrast agent on the estimation of area at risk for necrosis after coronary occlusion. J Am Coll Cardiol 1985;6:82530.
  12. Kaul S, Glasheen WP, Oliner JD, Kelly P, Gascho JA. Relation between anterograde blood flow through a coronary artery and the perfusion bed it supplies: experimental and clinical implications. J Am Coll Cardiol 1991;17:1403-13. https://doi.org/10.1016/S0735-1097(10)80154-8
  13. Kaul S, Pandian NG, Guerrero JL, Gillam LD, Okada RD, Weyman AE. Effects of selectively altering the collateral driving pressure on regional perfusion and function in the occluded coronary bed in the dog. Circ Res 1987;61:7785.
  14. Vernon SM, Camarano G, Kaul S, et al. Myocardial contrast echocardiography demonstrates that collateral flow can preserve myocardial function beyond a chronically occluded coronary artery. Am J Cardiol 1996;78:958-60 https://doi.org/10.1016/S0002-9149(96)00478-X
  15. Keller MW, Segal SS, Kaul S, Duling B. The behavior of sonicated albumin microbubbles within the microcirculation: a basis for their use during myocardial contrast echocardiography. Circ Res 1989;65:45867.
  16. Jayaweera AR, Edwards N, Glasheen WP, Villanueva FS, Abbott RD, Kaul S. In vivo myocardial kinetics of air-filled albumin microbubbles during myocardial contrast echocardiography. Comparison with radiolabeled red blood cells. Circ Res 1994;74:1157-65. https://doi.org/10.1161/01.RES.74.6.1157
  17. Wei K, Skyba DM, Firschke C, Jayaweera AR, Lindner JR, Kaul S. Interactions between microbubbles and ultrasound: in vitro and in vivo observations. J Am Coll Cardiol 1997;29:1081-8. https://doi.org/10.1016/S0735-1097(97)00029-6
  18. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood flow with ultrasound-induced destruction of microbubbles administered as a continuous infusion. Circulation 1998;97:473-83. https://doi.org/10.1161/01.CIR.97.5.473
  19. Le DE, Jayaweera AR, Wei K, Coggins MP, Lindner JR, Kaul S. Changes in myocardial blood volume over a wide range of coronary driving pressures: role of capillaries beyond the autoregulation range. Heart 2004;90:1199-205. https://doi.org/10.1136/hrt.2003.020875
  20. Lindner JR, Song J, Jayaweera AR, Sklenar J, Kaul S. Microvascular rheology of definity microbubbles after intra-arterial and intravenous administration. J Am Soc Echocardiogr 2002;15:396-403 https://doi.org/10.1067/mje.2002.117290
  21. Coggins MP, Sklenar J, Le DE, Wei K, Lindner JR, Kaul S. Noninvasive prediction of ultimate infarct size at the time of acute coronary occlusion based on the extent and magnitude of collateralderived myocardial blood flow. Circulation 2001;104:2471-7. https://doi.org/10.1161/hc4501.098954
  22. Kerber RE, Marcus ML, Ehrhardt J, Wilson R, Abboud FM. Corrrelation between echocardiographically demonstrated segmental dyskinesis and regional myocardial perfusion. Circulation 1975;52:1097-104. https://doi.org/10.1161/01.CIR.52.6.1097
  23. Lieberman AN, Weiss JL, Jugdutt BI, et al. Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thinning to the extent of myocardial infarction in the dog. Circulation 1981;63:739-46. https://doi.org/10.1161/01.CIR.63.4.739
  24. Lima JA, Becker LC, Melin JA, et al. Impaired thickening of nonischemic myocardium during acute regional ischemia in the dog. Circulation 1985;71:1048-59. https://doi.org/10.1161/01.CIR.71.5.1048
  25. Force T, Kemper A, Perkins L, Gilfoil M, Cohen C, Parisi AF. Overestimation of infarct size by quantitative two-dimensional echocardiography: the role of tethering and of analytic procedures. Circulation 1986;73:1360-8. https://doi.org/10.1161/01.CIR.73.6.1360
  26. Weyman AE, Franklin TD Jr, Hogan RD, et al. Importance of temporal heterogeneity in assessing the contraction abnormalities associated with acute myocardial ischemia. Circulation 1984;70:102-12. https://doi.org/10.1161/01.CIR.70.1.102
  27. Leong-Poi H, Coggins MP, Sklenar J, Jayaweera AR, Wang XQ, Kaul S. Role of collateral blood flow in the apparent disparity between the extent of abnormal wall thickening and perfusion defect size during acute myocardial infarction and demand ischemia. J Am Coll Cardiol 2005;45:565-72. https://doi.org/10.1016/j.jacc.2004.11.032