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1. Introduction

The notion of uniformly Lipschitz stability (ULS) was introduced by Dannan
and Elaydi [9]. This notion of ULS lies somewhere between uniformly stability
on one side and the notions of asymptotic stability in variation of Brauer [4]
and uniformly stability in variation of Brauer and Strauss [3] on the other side.
An important feature of ULS is that for linear systems, the notion of uniformly
Lipschitz stability and that of uniformly stability are equivalent. However, for
nonlinear systems, the two notions are quite distinct. Also, Elaydi and Farran
[10] introduced the notion of exponential asymptotic stability(EAS) which is
a stronger notion than that of ULS. They investigated some analytic criteria
for an autonomous differential system and its perturbed systems to be EAS.
Gonzalez and Pinto [11] proved theorems which relate the asymptotic behavior
and boundedness of the solutions of nonlinear differential systems.

In this paper, we investigate Lipschitz and asymptotic stability for solutions of
the functional differential systems. To do this we need some integral inequalities.
The method incorporating integral inequalities takes an important place among
the methods developed for the qualitative analysis of solutions to linear and
nonlinear system of differential equations. In the presence the method of integral
inequalities is as efficient as the direct Lyapunov’s method.
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2. Preliminaries

We consider the nonlinear nonautonomous differential system

x′(t) = f(t, x(t)), x(t0) = x0, (1)

where f ∈ C(R+ × Rn,Rn), R+ = [0,∞) and Rn is the Euclidean n-space.
We assume that the Jacobian matrix fx = ∂f/∂x exists and is continuous on
R+ ×Rn and f(t, 0) = 0. Also, consider the perturbed differential system of (1)

y′ = f(t, y) +

∫ t

t0

g(s, y(s))ds+ h(t, y(t), T y(t)), y(t0) = y0, (2)

where g ∈ C(R+×Rn,Rn), h ∈ C[R+×Rn×Rn,Rn] , g(t, 0) = 0, h(t, 0, 0) = 0,
and T : C(R+,Rn) → C(R+,Rn) is a continuous operator .

For x ∈ Rn, let |x| = (
∑n

j=1 x
2
j )

1/2. For an n× n matrix A, define the norm

|A| of A by |A| = sup|x|≤1 |Ax|.
Let x(t, t0, x0) denote the unique solution of (1) with x(t0, t0, x0) = x0, exist-

ing on [t0,∞). Then we can consider the associated variational systems around
the zero solution of (1) and around x(t), respectively,

v′(t) = fx(t, 0)v(t), v(t0) = v0 (3)

and

z′(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0. (4)

The fundamental matrix Φ(t, t0, x0) of (4) is given by

Φ(t, t0, x0) =
∂

∂x0
x(t, t0, x0),

and Φ(t, t0, 0) is the fundamental matrix of (3).
Before giving further details, we give some of the main definitions that we

need in the sequel [9].

Definition 2.1. The system (1) (the zero solution x = 0 of (1)) is called
(S)stable if for any ϵ > 0 and t0 ≥ 0, there exists δ = δ(t0, ϵ) > 0 such that if
|x0| < δ , then |x(t)| < ϵ for all t ≥ t0 ≥ 0,
(US)uniformly stable if the δ in (S) is independent of the time t0,
(ULS) uniformly Lipschitz stable if there exist M > 0 and δ > 0 such that
|x(t)| ≤ M |x0| whenever |x0| ≤ δ and t ≥ t0 ≥ 0
(ULSV) uniformly Lipschitz stable in variation if there exist M > 0 and δ > 0
such that |Φ(t, t0, x0) ≤ M for |x0| ≤ δ and t ≥ t0 ≥ 0,
(EAS) exponentially asymptotically stable if there exist constants K > 0 , c > 0,
and δ > 0 such that

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t
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provided that |x0| < δ,
(EASV) exponentially asymptotically stable in variation if there exist constants
K > 0 and c > 0 such that

|Φ(t, t0, x0)| ≤ K e−c(t−t0), 0 ≤ t0 ≤ t

provided that |x0| < ∞.

Remark 2.1 ([11]). The last definition implies that for |x0| ≤ δ

|x(t)| ≤ K |x0|e−c(t−t0), 0 ≤ t0 ≤ t.

We give some related properties that we need in the sequel. We need Alekseev
formula to compare between the solutions of (1) and the solutions of perturbed
nonlinear system

y′ = f(t, y) + g(t, y), y(t0) = y0, (5)

where g ∈ C(R+ × Rn,Rn) and g(t, 0) = 0. Let y(t) = y(t, t0, y0) denote the
solution of (5) passing through the point (t0, y0) in R+ × Rn.

The following is a generalization to nonlinear system of the variation of con-
stants formula due to Alekseev [1].

Lemma 2.1. Let x and y be a solution of (1) and (5), respectively. If y0 ∈ Rn,
then for all t such that x(t, t0, y0) ∈ Rn,

y(t, t0, y0) = x(t, t0, y0) +

∫ t

t0

Φ(t, s, y(s)) g(s, y(s)) ds.

Lemma 2.2 ([8]). Let u, λ1, λ2, w ∈ C(R+), w(u) be nondecreasing in u and
1
vw(u) ≤ w(uv ) for some v > 0. If , for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)u(s)ds+

∫ t

t0

λ1(s)
{∫ s

t0

λ2(τ)w(u(τ))dτ
}
ds, t ≥ t0 ≥ 0,

then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ2(s)ds
]
exp

(∫ t

t0

λ1(s)ds
)
, t0 ≤ t < b1,

where W (u) =
∫ u

u0

ds
w(s) ,u > 0, u0 > 0, W−1(u) is the inverse of W (u), and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

λ2(s)ds ∈ domW−1
}
.

Lemma 2.3 ([15]). Let u, p, q, w, and r ∈ C(R+) and suppose that, for some
c ≥ 0, we have

u(t) ≤ c+

∫ t

t0

p(s)

∫ s

t0

[q(τ)u(τ) + w(τ)

∫ τ

t0

r(a)u(a)da]dτds, t ≥ t0.
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Then

u(t) ≤ c exp(

∫ t

t0

p(s)

∫ s

t0

[q(τ) + w(τ)

∫ τ

t0

r(a)da]dτds), t ≥ t0.

Lemma 2.4 ([13]). Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)) and w(u) be
nondecreasing in u ,u ≤ w(u). Suppose that for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)w(u(s))ds+

∫ t

t0

λ2(s)(

∫ s

t0

λ3(τ)u(τ)dτ)ds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ))ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.2, and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ))ds ∈ domW−1
}
.

Lemma 2.5 ([13]). Let u, p, q, w, r ∈ C(R+), w ∈ C((0,∞)) and w(u) be non-
decreasing in u, u ≤ w(u). Suppose that for some c ≥ 0,

u(t) ≤ c+

∫ t

t0

(p(s)

∫ s

t0

(q(τ)w(u(τ)) + v(τ)

∫ τ

t0

r(a)u(a)da)dτ)ds, t ≥ t0.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(p(s)

∫ s

t0

(q(τ) + v(τ)

∫ τ

t0

r(a)da)dτ)ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.2, and

b1 = sup
{
t ≥ t0 : W (c)+

∫ t

t0

(p(s)

∫ s

t0

(q(τ)+v(τ)

∫ τ

t0

r(a)da)dτ)ds ∈ domW−1
}
.

Lemma 2.6 ([6]). Let u, λ1, λ2, λ3 ∈ C(R+), w ∈ C((0,∞)) and w(u) be non-
decreasing in u. Suppose that for some c > 0,

u(t) ≤ c+

∫ t

t0

λ1(s)w(u(s))ds+

∫ t

t0

λ2(s)(

∫ s

t0

λ3(τ)w(u(τ))dτ)ds, 0 ≤ t0 ≤ t.

Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ))ds
]
, t0 ≤ t < b1,

where W , W−1 are the same functions as in Lemma 2.2, and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0

(λ1(s) + λ2(s)

∫ s

t0

λ3(τ))ds ∈ domW−1
}
.
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Lemma 2.7 ([5]). Let u, λ1, λ2, λ3, λ4, w ∈ C(R+), w ∈ C((0,∞)) and w(u) be
nondecreasing in u, u ≤ w(u). Suppose that for some c ≥ 0,

u(t) ≤ c+

∫ t

t0

λ1(s)
[
(

∫ s

t0

[λ2(τ)w(u(τ))+λ3(τ)

∫ τ

t0

k(r)u(r)dr]dτ)+λ4(s)w(u(s))
]
ds,

for t ≥ t0 ≥ 0 and for some c ≥ 0. Then

u(t) ≤ W−1
[
W (c) +

∫ t

t0

λ1(s)(

∫ s

t0

(λ2(τ) + λ3(τ)

∫ τ

t0

k(r)dr)dτ) + λ4(s))ds
]
,

for t0 ≤ t < b1, where W , W−1 are the same functions as in Lemma 2.2, and

b1 = sup
{
t ≥ t0 : W (c) +

∫ t

t0
λ1(s)(

∫ s

t0
(λ2(τ) + λ3(τ)

∫ τ

t0
k(r)dr)dτ)

+λ4(s))ds ∈ domW−1
}
.

3. Main results

In this section, we investigate Lipschitz and asymptotic stability for solutions
of the perturbed functional differential systems.

Theorem 3.1. For the perturbed (2), we asssume that∫ t

t0

|g(s, y(s))|ds ≤ a(t)w(|y(t)|) + b(t)

∫ t

t0

k(s)|y(s)|ds, (6)

and

|h(t, y(t), T y(t))| ≤ c(t)w(|y|), (7)

where a, b, c, k ∈ C(R+), a, b, c, k ∈ L1(R+), w ∈ C((0,∞), and w(u) is nonde-
creasing in u, u ≤ w(u), and 1

vw(u) ≤ w(uv ) for some v > 0,

M(t0) = W−1
[
W (M) +M

∫ ∞

t0

(a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ)ds
]
, (8)

where M(t0) < ∞ and b1 = ∞. Then the zero solution of (2) is ULS whenever
the zero solution of (1) is ULSV.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1) and (2),
respectively. Since x = 0 of (1) is ULSV, it is ULS ([9],Theorem 3.3). Applying
Lemma 2.1, condition (6), and condition (7), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ M |y0|+
∫ t

t0

M |y0|(a(s) + c(s))w(
|y(s)|
|y0|

)ds

+

∫ t

t0

M |y0|b(s)
∫ s

t0

k(τ)
|y(τ)|
|y0|

dτds.
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Set u(t) = |y(t)||y0|−1. Now an application of Lemma 2.4 yields

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

(a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ)ds
]
.

By condition (8), we have |y(t)| ≤ M(t0)|y0| for some M(t0) > 0 whenever
|y0| < δ. This completes the proof. �

Remark 3.1. Letting c(t) = 0 in Theorem 3.1, we obtain the same result as
that of Theorem 3.6 in [12].

Theorem 3.2. For the perturbed (2), we asssume that

|g(t, y)| ≤ a(t)w(|y(t)|) + b(t)

∫ t

t0

k(s)|y(s)|ds, (9)

and

|h(t, y(t), T y(t))| ≤ c(t)w(|y|), (10)

where a, b, c, k ∈ C(R+), a, b, c, k ∈ L1(R+) , w ∈ C((0,∞), and w(u) is nonde-
creasing in u, u ≤ w(u), and 1

vw(u) ≤ w(uv ) for some v > 0,

M(t0) = W−1
[
W (M) +M

∫ ∞

t0

(

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ + c(s))ds
]
, (11)

where M(t0) < ∞ and b1 = ∞. Then the zero solution of (2) is ULS whenever
the zero solution of (1) is ULSV.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1) and (2),
respectively. Since x = 0 of (1) is ULSV, it is ULS . Using the nonlinear variation
of constants formula , condition (9), and condition (10), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ M |y0|+
∫ t

t0

M |y0|
[ ∫ s

t0

(a(τ)w(
|y(τ)|
|y0|

) + b(τ)

∫ τ

t0

k(r)
|y(r)|
|y0|

dr)dτ

+c(s)w(
|y(s)|
|y0|

)
]
ds.

Set u(t) = |y(t)||y0|−1. Then, it follows from Lemma 2.7 that

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

(

∫ s

t0

(a(τ) + b(τ)

∫ τ

t0

k(r)dr)dτ + c(s))ds
]
,

By condition (11), we have |y(t)| ≤ M(t0)|y0| for some M(t0) > 0 whenever
|y0| < δ, and so the proof is complete. �

Remark 3.2. Letting c(t) = 0 in Theorem 3.2, we obtain the same result as
that of Theorem 3.7 in [12].
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Theorem 3.3. For the perturbed (2), we asssume that

|g(t, y)| ≤ a(t)w(|y(t)|) + b(t)

∫ t

t0

k(s)|y(s)|ds, (12)

and

|h(t, y(t), T y(t))| ≤
∫ t

t0

c(s)w(|y(s)|)ds, (13)

where a, b, c, k ∈ C(R+), a, b, c, k ∈ L1(R+) , w ∈ C((0,∞), and w(u) is nonde-
creasing in u, u ≤ w(u), and 1

vw(u) ≤ w(uv ) for some v > 0,

M(t0) = W−1
[
W (M) +M

∫ ∞

t0

∫ s

t0

(a(τ) + c(τ) + b(τ)

∫ τ

t0

k(r)dr)dτds
]
, (14)

where M(t0) < ∞ and b1 = ∞. Then the zero solution of (2) is ULS whenever
the zero solution of (1) is ULSV.

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1) and (2),
respectively. Since x = 0 of (1) is ULSV, it is ULS. Using the nonlinear variation
of constants formula, condition (12), and condition (13), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ M |y0|+
∫ t

t0

M |y0|
∫ s

t0

[(a(τ) + c(τ))w(
|y(τ)|
|y0|

)dτds

+

∫ t

t0

M |y0|
∫ s

t0

b(τ)

∫ τ

t0

k(r)
|y(r)|
|y0|

dr]dτds.

Set u(t) = |y(t)||y0|−1. Now an application of Lemma 2.5 yields

|y(t)| ≤ |y0|W−1
[
W (M) +M

∫ t

t0

∫ s

t0

(a(τ) + c(τ) + b(τ)

∫ τ

t0

k(r)dr)dτds
]
,

t ≥ t0. From condition (14) we get |y(t)| ≤ M(t0)|y0| for some M(t0) > 0
whenever |y0| < δ, and so the proof is complete. �

Remark 3.3. Letting c(s) = 0 in Theorem 3.3, we obtain the same result as
that of Theorem 3.7 in [12].

Theorem 3.4. Let the solution x = 0 of (1) be EASV. Suppose that the per-
turbing term g(t, y) satisfies

|g(t, y(t))| ≤ e−αt
(
a(t)|y(t)|+ b(t)

∫ t

t0

k(s)|y(s)|ds
)
, (15)

and

|h(t, y(t), T y(t))| ≤
∫ t

t0

e−αsc(s)|y(s)|ds, (16)
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where α > 0, a, b, c, k ∈ C(R+), a, b, c, k ∈ L1(R+) , w(u) is nondecreasing in u.
If

M(t0) = c exp(

∫ ∞

t0

Meαs
∫ s

t0

[a(τ) + c(τ) + b(τ)

∫ τ

t0

k(r)dr]dτds) < ∞, (17)

where c = |y0|Meαt0 , then all solutions of (2) approch zero as t → ∞

Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1) and (2),
respectively. Since the solution x = 0 of (1) is EASV, by remark 2.1, it is EAS.
Using Lemma 2.1, condition (15), and condition (16), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)

∫ s

t0

[e−ατ (a(τ) + c(τ))|y(τ)|

+e−ατ b(τ)

∫ τ

t0

k(r)|y(r)|drdτ ]ds,

≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)

∫ s

t0

[(a(τ) + c(τ))|y(τ)|eατ

+b(τ)

∫ τ

t0

k(r)|y(r)|eαrdrdτ ]ds.

Set u(t) = |y(t)|eαt. By Lemma 2.3, we obtain

|y(t)| ≤ ce−αt exp(

∫ t

t0

Meαs
∫ s

t0

[a(τ) + c(τ) + b(τ)

∫ τ

t0

k(r)dr]dτds), t ≥ t0,

where c = M |y0|eαt0 . By condition (17), we have |y(t)| ≤ ce−αtM(t0). This
estimation yields the desired result. �
Remark 3.4. Letting c(s) = 0 in Theorem 3.4, we obtain the same result as
that of Theorem 3.8 in [12].

Theorem 3.5. Let the solution x = 0 of (1) be EASV. Suppose that the perturbed
term g(t, y) satisfies∫ t

t0

|g(s, y(s))|ds ≤ e−αt
(
a(t)w(|y(t)|) + b(t)

∫ t

t0

k(s)w(|y(s)|)ds
)
, (18)

and
|h(t, y(t), T y(t))| ≤ e−αtc(t)w(|y|), (19)

where α > 0, a, b, c, k, w ∈ C(R+), a, b, c, k ∈ L1(R+), w(u) is nondecreasing in
u, and 1

vw(u) ≤ w(uv ) for some v > 0. If

M(t0) = W−1
[
W (c) +M

∫ ∞

t0

(a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ)ds
]
< ∞, b1 = ∞,

(20)
where c = M |y0|eαt0 , then all solutions of (2) approch zero as t → ∞
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Proof. Let x(t) = x(t, t0, y0) and y(t) = y(t, t0, y0) be solutions of (1) and (2),
respectively. Since the solution x = 0 of (1) is EASV, it is EAS by remark 2.1.
Using Lemma 2.1, condition (18), and condition (19), we have

|y(t)| ≤ |x(t)|+
∫ t

t0

|Φ(t, s, y(s))|(
∫ s

t0

|g(τ, y(τ))|dτ + |h(s, y(s), T y(s))|)ds

≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−α(t−s)[e−αsa(s)w(|y(s)|)

+e−αsb(s)

∫ s

t0

k(τ)w(|y(τ)|)dτ + e−αsc(s)w(|y(s)|)]ds.

≤ M |y0|e−α(t−t0) +

∫ t

t0

Me−αt(a(s) + c(s))w(|y(s)|eαs)ds

+

∫ t

t0

Me−αtb(s)

∫ s

t0

k(τ)w(|y(τ)|eατ )dτ ]ds.

Set u(t) = |y(t)|eαt. Since w(u) is nondecreasing, an application of Lemma 2.6
obtains

|y(t)| ≤ e−αtW−1
[
W (c) +M

∫ t

t0

(a(s) + c(s) + b(s)

∫ s

t0

k(τ)dτ)ds
]
, t ≥ t0,

where c = M |y0|eαt0 . By condition (20), we have |y(t)| ≤ e−αtM(t0). From this
estimation, we obtain the desired result. �

Remark 3.5. Letting c(t) = 0 in Theorem 3.5, we obtain the same result as
that of Theorem 3.9 in [12].
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