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PARAMETER ESTIMATION AND SPECTRUM OF

FRACTIONAL ARIMA PROCESS†

JOO-MOK KIM∗ AND YUN-KYONG KIM

Abstract. We consider fractional Brownian motion and FARIMA process

with Gaussian innovations and show that the suitably scaled distributions
of the FARIMA processes converge to fractional Brownian motion in the
sense of finite dimensional distributions. We figure out ACF function and
estimate the self-similarity parameter H of FARIMA(0, d, 0) by using R/S

method. Finally, we display power spectrum density of FARIMA process.
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1. Introduction

Traffic measurements in many network environments demonstrate long range
dependent process(LRD) and self-similar processes which appear in many con-
texts, for example, in the analysis of traffic load in high speed networks [3, 14].
On the other hand, Self-similarity, long range dependence and heavy tailed
process have been observed in many time series, i.e. signal processing and fi-
nance [5, 9].

The models based on self-similarity could reflect the features of LRD only
by Hurst parameter [6, 13]. Because the traditional short range dependent
process(SRD) could not reflect self-similar traffic’s attention to the network,
FARIMA model and superposition model in which the sojourn time complies
with heavy-tailed distributed ON/OFF sources are required [10].

In particular, A fractional autoregressive integrated moving average pro-
cess(FARIMA) is widely used in video and network traffic modeling [1, 2, 4, 7].
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In this paper, we use the fractionally integrated autoregressive moving aver-
age processes with Gaussian innovations to describe convergence to Fractional
Brownian motion [8, 11].

On the other hand, various methods for estimating the self-similarity parame-
ter H or the intensity of long-range dependence in a time series has investigated
[12, 13]. In particular, we use R/S method for parameter estimation of self-
similarity in FARIMA processes.

In section 2, we define long range dependence, self-similar process, fractional
Brownian motion, fractional Gaussian noise and FARIMA processes with Gauss-
ian innovations. In section 3, we prove the weak convergence of FARIMA pro-
cesses to fractional Bronian motion. In section 4, we figure out the self-similarity
H of FARIMA(0, d, 0) and display the power spectrum density function of frac-
tional autoregressive integrated moving average processes.

2. Definition and Preliminary

In this section we first define short range dependence and long range depen-
dence. Let τX(k) be the covariance of stationary stochastic process X(t).

Definition 2.1. A stationary stochastic process X(t) exhibits short range de-
pendence if

∞∑
k=−∞

|τX(k)| < ∞

Definition 2.2. A stationary stochastic process X(t) exhibits long range de-
pendence if

∞∑
k=−∞

|τX(k)| = ∞

A standard example of a long range dependent process is fractional Brownian
motion, with Hurst parameter H > 1

2 .

Definition 2.3. A continuous process X(t) is self-similar with self-similarity
parameter H ≥ 0 if it satisfies the condition:

X(t)
d
= c−HX(ct), ∀ t ≥ 0,∀c > 0,

where the equality is in the sense of finite-dimensional distributions.

Self-similar processes are invariant in distribution under scaling of time and
space. Brownian motion is a Gaussian process with mean zero and autocovari-
ance function

E[X(t1)X(t2)] = min(t1, t2).

It isH self-similar withH = 1/2. And, Fractional Brownian motion is important
example of self-similar process.



Estimation and spectrum of FARIMA 205

Definition 2.4. A stochastic process {BH(t)} is said to be a fractional Brownian
motion(FBM) with Hurst parameter H if

1. BH(t) has stationary increments
3. BH(0) = 0 a.s.
4. The increments of BH(t), Z(j) = BH(j + 1)−BH(j) satisfy

ρZ(k) =
1

2
{|k + 1|2H + |k − 1|2H − 2k2H}

Definition 2.5. Let

Gj = BH(j + 1)−BH(j), j = · · · ,−1, 0, 1, · · · .

The sequence {Gj , j ∈ Z} is called fractional Gaussian noise (FGN).

Since fractional Brownian motion {BH(t) : t ∈ R} has stationary increments,
its increments Gj form a stationary sequence. Fractional Gaussian noise is a
mean zero and stationary Gaussian time series whose autocovariance function
τ(h) = EGiGi+h is given by

τ(h) = 2−1{(h+ 1)2H − 2h2H + |h− 1|2H},

h ≥ 0. As h → ∞,

τ(h) ∼ H(2H − 1)h2H−2.

Since τ(h) = 0 for h ≥ 1 when H = 1/2. the Gi are white noise. When
1/2 < H < 1, they display long-range dependence.

We introduce a FARIMA(p, d, q) which is both long range dependent and has
heavy tails. FARIMA(p, d, q) processes are capable of modeling both short and
long range dependence in traffic models since the effect of d on distant samples
decays hyperbolically while the effects of p and q decay exponentially.

Definition 2.6. A stationary process Xt is called a FARIMA(p, d, q) process if

ϕ(B)∇dXt = θ(B)Zt

where ϕ(B) = 1 − ϕ1B − · · · − ϕpB
p, θ(B) = 1 − θ1B − · · · − θqB

q and the
coefficients ϕ1, · · · , ϕp and θ1, · · · , θq are constants,

∇d = (1−B)d =
∞∑
i=0

bi(−d)Bi

and B is the backward shift operator defined as BiXt = Xt−i and

bi(−d) =

i∏
k=1

k + d− 1

k
=

Γ(i+ d)

Γ(d)Γ(i+ 1)
.

For large lags d, the autocovariance function satisfies for 0 < d < 1/2,

τ(h) ∼ Cdh
2d−1 as h → ∞
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where Cd = π−1Γ(1 − 2d) sin(πd). Thus, for large lags d, the autocovariance
function has the same power decay as the autocovariance of fractional Gaussian
noise. Relating the exponents gives

d = H − 1

2
.

3. Weak Convergence of FARIMA to Fractional Brownian motion

Lemma 3.1. Fix 1/2 < H < 1 and let {Zj , j = · · · ,−1, 0, 1, · · · } be a stationary
Gaussian sequence with mean zero and autocovariance function τ(j) = EZ0Zj

satisfying:

τ(j) ∼ cj2H−2 as j → ∞ with c > 0;

Then the finite dimensional distributions of {N−H
∑[Nt]

j=1 Zj , 0 ≤ t ≤ 1} converge

to those of {σ0BH(t), 0 ≤ t ≤ 1} where

σ2
0 = H−1(2H − 1)−1c

Proof. Theorem 7.2.11 of [6]. �

Theorem 3.2.

1

NH

1

M1/2

(i+1)N∑
k=iN+1

M∑
j=0

bj(−d)ak−j

converges to σ0Gi in the sense of finite dimensional distributions, as M → ∞

and N → ∞, where, σ2
0 =

−Γ(2− 2H) cos(πH)

πH(2H − 1)
.

Proof. By Lemma 2 of [8],

lim
M→∞

1

M1/2

M∑
j=0

bj(−d)ak−j = GH(k).

Here, GH(k) represents a stationary Gaussian process whose covariance function
has the form τ(k) ∼ ck2H−2 and 1/2 < H < 1.
And, the covariance function of

∑∞
j=0 bj(−d)ak−j ,

τ(k) ∼ Γ(1− 2d) sin(πd)

π
k2d−1

=
−Γ(2− 2H) cos(πH)

π
k2H−2

where H = d+ 1/2 , has the same form as ck2H−2. Therefore,

lim
M→∞

1

NH

1

M1/2

(i+1)N∑
k=iN+1

M∑
j=0

bj(−d)ak−j =
1

NH

(i+1)N∑
k=iN+1

GH(k).
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By Lemma 3.1, with σ2
0 = −Γ(2−2H) cos(πH)

πH(2H−1) ,

N−H

(i+1)N∑
k=iN+1

GH(k) = N−H

(i+1)N∑
k=1

GH(k)−N−H
iN∑
k=1

GH(k)

converge to

σ0BH(i+ 1)− σ0BH(i) = σ0Gi.

�

Theorem 3.3.

1

THM1/2

[Tt]∑
k=0

M∑
j=0

bj(−d)ak−j

converges to σ0BH(t) in the sense of finite dimensional distributions, as T → ∞

and M → ∞, where, σ2
0 =

−Γ(2− 2H) cos(πH)

πH(2H − 1)
.

Proof. Consider the partial sum of

1

TH

1

M1/2

(i+1)T∑
k=iT+1

M∑
j=0

bj(−d)ak−j

which converges to fractional Brownian motion {BH(t) : t ∈ R} in the sense of
finite dimensional distributions by Theorem 3.2 . �

4. Estimation of the self-similarity and PSD of FARIMA

When d < 1/2, the FARIMA process is stationary and the covariance func-
tion of a FARIMA(0, d, 0) process with zero mean and unit variance Gaussian
innovations has the form

τ(k) =
(−1)k(−2d)!

(π − d)!(−k − d)!

∼ Γ(1− 2d) sin(πd)

π
k2d−1 as k → ∞

The covariance function of the generalized FARIMA(p, d, q) processes with
Gaussian innovations has additional short-term components but follows the same
asymptotic relation as the covariance function as FARIMA(0, d, 0) processes.
Hence, we consider FARIMA(0, d, 0) in terms of d = 0.3 and estimate the self-
similarity parameter H .

The R/S method which was used by Taqqu and Willinger([12,13]) is one of
the better known method. For a time series X = {Xi : i ≤ 1}, with partial sum
Y (n) =

∑n
i=1 Xi, and sample variance S2(n) = (1/n)

∑n
i=1 X

2
i − (1/n)2Y (n)2,

the R/S static, or the rescaled adjusted range, is given by

R

S
(n) =

1

S(n)

[
max0≤t≤n(Y (t)− t

n
Y (n))−min0≤t≤n(Y (t)− t

n
Y (n))

]
.
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Figure 1. Simulated FARIMA(0, 0.3, 0), n = 1, 000

Figure 2. Autocorrelation Function

For fractional gaussian noise,

E[R/S(n)] ∼ CHnH , as n → ∞,

where, CH is positive and finite constant not depend on n.

The following Figure 1 and 2 illustrates simulated FARIMA process and au-
tocorrelation function with d = 0.3 in the case n = 200.

To determine H using the R/S statistic, proceed as follows. For a time series
of length N , subdivide the series into blocks. Then, for each lag n, compute
R(n)/S(n). Choosing logarithmically spaced values of n, plot log[R(n)/S(n)]
versus log(n) and get, for each n, several points on the plot. The spectrum
density of a FARIMA(p, d, q) process is equal to

fY (λ) =
σ2|θ(exp(−iλ))|2

2π|ϕ(exp(−iλ))|2
|1− exp(−iλ)|−2d.
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Figure 3. Estimating H

Figure 4. Power Spectrum Density

In Figure 3, we estimate H as 0.830126 by calculating the R/S statistic and
Figure 4 display power spectrum density of FARIMA process with d = 0.3.
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