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ALGORITHM FOR WEBER PROBLEM WITH A METRIC

BASED ON THE INITIAL FARE†

LEV A. KAZAKOVTSEV∗ AND PREDRAG S. STANIMIROVIC

Abstract. We introduce a non-Euclidean metric for transportation sys-
tems with a defined minimum transportation cost (initial fare) and in-
vestigate the continuous single-facility Weber location problem based on
this metric. The proposed algorithm uses the results for solving the We-

ber problem with Euclidean metric by Weiszfeld procedure as the initial
point for a special local search procedure. The results of local search are
then checked for optimality by calculating directional derivative of modi-

fied objective functions in finite number of directions. If the local search
result is not optimal then algorithm solves constrained Weber problems
with Euclidean metric to obtain the final result. An illustrative example is
presented.
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1. Introduction

Weber problem [29] is a continuous optimization problem for finding a point
X∗ ∈ Rn satisfying

X∗ = arg min
X∈Rn

N∑
i=1

wi∥Ai −X∥. (1)

Here, Ai ∈ Rn, i = 1, . . . , N are some known demand points, wi ∈ R, wi ≥ 0 are
some weighting coefficients, ∥ · ∥ : Rn → R is a vector norm [20].

Main appearances of the Weber problem include the warehouse location [10,
7], positioning computer and communication networks [14], locating base sta-
tions of wireless networks. Solving a Weber problem (searching for a centroid)
is a step of many clustering algorithms [25, 19, 9].
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The problem (1) was originally formulated by Weber [29] with Euclidean norm
(∥ · ∥ = l2(·)) and it is generalized to lp norms and other metrics [29, 6].

Detailed explanation of various norms and metrics is presented in [21, 18, 8].
The lp norms play an important role in the theory and practice of location prob-
lems. The most common distance metrics in continuous space are Euclidean (l2),
rectangular (l1) and Chebyshev (l∞) metrics but other metrics are also impor-
tant for specific cases [1, 8, 23]. Various distance metrics can be used for solving
clustering problems [26, 30]. In [16], authors consider norm approximation and
approximated solution for Weber problems with an arbitrary metric using ran-
dom search [15]. Problems with barriers are described in [18]. In special cases,
such problems can be transformed into discrete problems [22].

In the case of public transportation systems, the price usually depends on
distance. However, some minimum price is usually defined. For example, the
initial fare of the taxi cab may include some distance, usually 1-5 km. Having
rescaled the distances so that this distance included in the initial price is equal
to 1, we can define the price function dP as

dP (X,Y ) = max{∥X − Y ∥, 1} ∀X,Y ∈ Rn, (2)

where ∥ · ∥ is a vector norm. We use the term ”taxi metric” to denote the metric
defined by (2). In this paper, we consider ∥ · ∥ as Euclidean norm in R2 only
(∥ · ∥2).

In clustering problems, such metric can be used to describe the distance be-
tween the samples and the core of the cluster [27] with fixed core diameter. A
metric which neglects the distances smaller than some pre-defined observational
error E is equivalent with our ”taxi” metric:

dE(X,Y ) = max{∥X − Y ∥ − E , 0} = E
(
dP

(
X

E
,
Y

E

)
− 1

)
.

The Radar Screen [3] metric is a very similar norm metric with the distance
function defined by

drs(X,Y ) = ||X − Y ||rs = min{1, ||X − Y ||2}∀X,Y ∈ Rn. (3)

The Weber problem with the Radar Screen metric is a special case of the prob-
lem considered in [11]. Unlike (3), our distance function (2) is convex and our
approach significantly differs from that proposed in [11].

The paper is organized as follows. In Chapter 2, we restate some basic def-
initions and describe existing algorithms and investigate some features of the
objective function. In Chapter 3, we restate the algorithm for the Weber prob-
lem with new metric. In chapter 4, we give a simple example and results of the
algorithm.

2. Preliminaries

The single-facility Weber problem (1) in R2 (planar problem) with ”taxi met-
ric” (2) can be formulated as
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X∗ = arg min
X∈R2

f(X) = arg min
X∈R2

N∑
i=1

wi max{1, ||Ai −X||2}

= arg min
X∈R2

N∑
i=1

wi max

{
1,
√
(x1 − ai1)

2 + (x2 − ai2)
2

}
.

(4)

Here, Ai = (ai1, a
i
2), i = 1, . . . , N , X = (x1, x2).

The problem proposed by Weber is based on the Euclidean metric

X∗ = arg min
X∈R2

fE(X) = arg min
X∈R2

N∑
i=1

wi||Ai −X||2

= arg min
X∈R2

N∑
i=1

wi

√
(x1 − ai1)

2 + (x2 − ai2)
2.

(5)

The most common algorithm for Weber problem with the metrics induced by
the lp norms is Weiszfeld procedure [28, 10].

For the simplicity, we assume that

wi > 0, i = 1, . . . , N. (6)

Lemma 2.1. If

∃SE ⊂ R2 : ∥X −Ai∥2 ≤ 1 ∀X ∈ SE , i = 1, . . . , N

then any point X ∈ SE is a solution of problem (4). Moreover, any X ′ /∈ SE is
not a minimizer of (4).

Proof. Let us assume that X∗ ∈ SE . Then for arbitrary ∀X ∈ R2 we have

f(X∗) =
N∑
i=1

wi ≤
N∑
i=1

wi max{1, ∥X −Ai∥2} = f(X),

which implies f(X∗) = min{f(X), X ∈ R2}. �

Lemma 2.1 describes the case when the non-iterative solution is possible.
More several cases when the non-iterative approach is applicable are described
in [2].

Let us denote the set

R0 = {X ∈ R2| ∥X −Ai∥2 ≥ 1, i = 1, . . . , N}. (7)

Lemma 2.2. If X∗ is the solution of the problem (4) and X∗ ∈ R0 then X∗ is
the solution of Weber problem (5) and vice versa.

Proof. Under the assumption X∗ ∈ R0 we have f(X∗) = fE(X
∗). �

Lemma 2.3. The objective function of problem (4) is convex.
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Proof. The sum of convex functions fi(X) = max{1, ||X − Ai||2}, i = 1, . . . , N
is convex. �

For any arbitrary point X ∈ R2, let us denote the sets of demand point indices

S≤(X) = {i ∈ {1, . . . , N}| ∥X −Ai∥2 ≤ 1}, (8)

S≥(X) = {i ∈ {1, . . . , N}| ∥X −Ai∥2 ≥ 1}, (9)

S>(X) = {i ∈ {1, . . . , N}| ∥X −Ai∥2 > 1} (10)

and a set of points (a region)

R(X) = {Y ∈ R2| S≤(X) = S≤(Y ) or S≥(X) = S≥(Y ) ∀i = 1, . . . , N} (11)

The regions R(X) of any point X ∈ R2 are bounded by arcs [11, 12] of radius
1 with centres in points Ai, i = 1, . . . , N (see Fig. 1). In [4], authors prove
that the quantity of regions is quadratically bounded by the number of demand
points.

An algorithm for solving constrained Weber problems with regions bounded
by arcs is proposed in [17].

Figure 1. Illustration of the problem (4), its regions Rk, k =
1,M and unions U1, U2.

Let our problem have M different regions Rk, k = 1, . . . ,M :

(X ∈ Rk) ⇔ (Rk = R(X)).

Note that R0 was introduced above. The border point of each region belong
to at least one other region.

The algorithm for enumerating all the disc intersection points is given in [5].
Let our problem has I disc intersections D1, . . . , DI .
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Lemma 2.4. If X∗ is a solution of the problem (4) and X∗ ∈ Rk, k = 0, . . . ,M
and S>(X

∗) ̸= ∅ then X∗ is the solution of the following constrained Weber
problem with the Euclidean metric:

arg min
X∈R2

fRk
(X) = arg min

X∈R2

∑
i∈S>(X∗)

wi||Ai −X, ||2 (12)

X ∈ Rk. (13)

Proof. The value of the objective function for X ∈ Rk is

f(X) =
N∑
i=1

widP (X,Ai) =
∑

i∈S≤(X)

wi +
∑

i∈S>(X)

wi||X −Ai||2

=
∑

i∈S≤(X∗)

wi +
∑

i∈S>(X∗)

wi||X −Ai||2.
(14)

Since the first summand in (14) is constant, we have an equivalent problem
(12) with the constraint (13). �

The solution of constrained optimization problems with convex objective func-
tions coincides with the solution of the corresponding unconstrained problem or
lays on the border of the forbidden region [12] (moreover, the solution of the
constrained problem is said to be visible from the solution of the unconstrained
problem).

Corollary 2.5. If X∗ is a solution of problem (4) then it is the solution of the
unconstrained problem (12) or ∃i ∈ {1, . . . , N} which satisfies ∥Ai −X∗∥2 = 1.

Let us denote by Uq, q = 1, . . . , NU the unions of regions Rk, k = 1, . . . ,M
surrounded by the region R0:

Uq =
∪

k:Rk∈Uq

Rk, q = 1, . . . , NU ,

NU∪
q=1

Uq =
M∪
k=1

Rk.

Denote also the borders of those unions by

Bq = Uq ∩R0

and set of points of all the borders as

B =
∪

q=1,...,NU

Bq.

Lemma 2.6. If X∗∗ is the unique solution of the problem (5) and X∗ is a
solution of the problem (4) then

∃Uq′ , q
′ ∈ {1, . . . , NU} : X∗ ∈ Uq′ , X

∗∗ ∈ Uq′ .
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Proof. Let us consider a constrained problem with the Euclidean metric

arg min
X∈R2

fE(X), (15)

X ∈ R0. (16)

Let X ′ be a solution of this problem.
As the objective function of this problem is convex, two cases are possible.
Case 1. X ′ = X∗∗.
Case 2. Solution X ′ of this constrained problem lies on the borderline of the

feasible set, i.e. X ′ ∈ B. Moreover, X ′ is visible from X∗∗.

In Case 1, in accordance with Lemma 2.2, X ′ ̸= X∗∗ unless X ′ ∈ B. Thus, if
X∗∗ ∈ Uq′ then X ′ ∈ Uq′ . From X ′ ∈ R0, we have X ′ ∈ Bq′ . Let us denote the
set (see Fig. 1)

S = {X ∈ R2| f(X) ≤ f(X ′)}.
From f(X) = fE(X) ∀X ∈ R0, X

′ is the solution of the constrained problem

arg min
X∈R2

f(X),

X ∈ R0.

From the convexity of the objective function f(·) immediately follows that
S is convex. Let us denote a set X ′

S of optimizers of the constrained problem
(15) – (16). From

̸ ∃X ′′ ∈ R0 : f(X ′′) ≤ f(X ′),

we have
̸ ∃X ′′ ∈ B : f(X ′′) ≤ f(X ′).

Thus,
̸ ∃X ′′ ∈ B \ X ′ : X ′′ ∈ S.

Therefore, the set S does not contain any barriers Bq of the unions Uq (q =
1, . . . , NU ) except the points from X ′

S and ∃X ′ ∈ X ′
S : X ′ ∈ Uq′ . Since

X ′ ∈ Uq′ and (S ∩ R0) ⊂ B, we have

S ⊂ Uq′ .

Since X∗ is the optimizer of (4), f(X∗) ≤ f(X ′). Thus, X∗ ∈ S and X∗ ∈
Ul′ . �
Lemma 2.7. Let X ′

S be the set of solutions of the constrained problem (12)-
(13). Let Gk be the set of border points of region Rk. Then the set G ∩ X ′

S is
finite unless S>(X

∗) = ∅∀X∗ ∈ X ′
S.

Proof. The case ||Ai −X||2 ≤ 1∀i = 1, ..., N,X ∈ X ′ Let X∗ ∈ X ′
S be an arbi-

trary point. If S>(X
∗) ̸= ∅ then, being the Weber problem with the Euclidean

metric, problem (12) has a strictly convex objective function unless all its de-
mand points Ai, i ∈ S>(X

∗) are collinear. In this case, the problem has exactly
one solution.

If the demand points are collinear, the solution coincides with one of de-
mand point Ai′ , i

′ ∈ S>(X
∗) or all points of some line segment Ai′Ai′′ , i

′ ∈
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S>(X
∗), i′′ ∈ S>(X

∗) are solutions. The border G is formed by arcs. Thus, it
has finite number of intersections with the line segment. �

The algorithms proposed in the next section are based on the lemmas above.
Algorithms for both constrained and unconstrained Weber problem with Eu-

clidean metric are well investigated, see [12, 13, 29]. We use these algorithms as
subroutines in our algorithm.

3. Algorithm description

Our algorithm starts the local search procedure from the initial point which is
calculated by the Weiszfeld procedure as the solution of the unconstrained Weber
problem with the Euclidean metric (5). If the solution X∗ satisfies X∗ ∈ R0

(i.e. ∥X∗ −Ai∥2 ≥ 1, i = 1, . . . , N) then, in accordance with Lemma 2.2, X∗ is
the solution of problem (4). Otherwise, algorithm continues further search from
point X∗.

Having solved problem (12) with constraint X ∈ R(X∗), we obtain a new
solution X∗ or a set of solutions. If the unique solution all points from the
solution set belong to the border of the union of regions Uq′ then, in accordance
with Lemma 2.6, we have the optimal solution.

If the unique solution X∗ or every point of the solution set does not contain
any border points of region R(X∗), due to convexity of the objective function,
we have the solution final and algorithm stops.

If the solution X∗ lays on the borderline of region R(X∗) or the solution set
contains any border points then we must solve the constrained Weber problem
for the regions containing X∗. If there are some better solutions, continue with
the best solution. Otherwise, stop.

Since the objective function is convex, we can use any local search procedure.
The following heuristics provides the significant speed-up. First, the value of
the objective function is calculated for the circle intersection points of the region
R(X∗) (i.e. its angular points) where X∗ if the solution of the unconstrained
Weber problem (5). This intersection X∗∗ with the best result is chosen as
an initial point for the further search. The local search procedure continues
then with the neighbor intersection points (i.e. the intersection points which are
the ends of the arcs starting from X∗∗). When the local search stops at some
intersection X∗∗, our algorithm checks if this point is the local minimum in each
of its neighbor regions. If it is not the local (and global) minimum, the search
continues with solving constrained Weber problem as described above.

If a temporal solution X∗∗ is an intersection point, the algorithm checks if
this point is the local minimum in each of its regions. The angular point of the
convex region is the point of minimum of the function in this region if all possible
directional derivatives are non-negative. But our regions can be non-convex.

Let us denote P(Rk) such a convex polygon that all its vertices coincide with
the angular points of the region Rk. Then region

ϱ(Rk) = Rk ∩ P(Rk)
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is convex.
Let us denote two rays l1 and l2 with initial point X∗∗ and an angle ϕ ∈ (0, π)

between them such that all points of the region ϱ(Rk) are situated between l1
and l2 and both l1 and l2 are tangent to the borderline of the region ϱ(Rk). All
possible directions from X∗∗ in the region ϱ(Rk) lay between l1 and l2.

From the convexity of region ϱ(Rk) and the objective function (12), if

∂fRk

∂l1
(X∗∗) > 0,

∂fRk

∂l2
(X∗∗) > 0 (17)

then X∗∗ is the minimum point of (12) in ϱ(Rk). Here,
∂fRk

∂l1
and

∂fRk

∂l2
are

directional derivatives with directions l1 and l2 correspondingly. From ϱ(Rk) ⊂
Rk, this point X

∗∗ is the minimum point in Rk.
If X∗∗ is the point of local minimum for all regions which it joins then X∗∗ is

the solution of problem (4) and solving the constrained Weber problem (12), (13)
is not needed. The experiments on the randomly generated problems and the
rescaled problems from [24] show that solving the constrained Weber problem is
not needed in most cases.

In our algorithm, regions Rk are enumerated as follows. The number k is an
array of N digits, one digit for each of the demand points. The ith digit is set to
1 if ||X −Ai|| < 1 for all internal points X of region Rk. If ||X −Ai|| > 1 then
the ith digit is set to 0. For example, region R6 (see Fig. 1) in new notation is
R11100. Using this method of enumeration, it is not necessary to enumerate all
regions at the first steps of the algorithm.

Analogous method of enumeration is used for intersection points Dj . The
index j contains N digits. If ||Dj − Ai|| > 1 then the ith digit is set to 0. If
||Dj − Ai|| < 1 then the ith digit is set to 1. If ||Dj − Ai|| = 1 then the ith
digit is set to 2. For example, the angulous point D1 (see Fig. 1) of regions R1,
R2, R5 and R6 in the proposed algorithm is denoted as D12200 (it is an internal
point of the circle with center in A1, border point of circles with centers in A2

and A3 and it is situated outside circles with centers in A4 and A5).
With this notation, it is easy to determine the region or regions for any

arbitrary point X∗. We use the following algorithm (here, k is an array of
digits).

Note that the region R0, see (7), in this notation is R000...0.

Algorithm 3.1. Determine the region index

Require: Coordinates X = (x1, x2) ot the point, coordinates of the demand
points Ai = (ai1, a

i
2), i = 1, N .

Step 1: for i = 1, . . . , N do:
Step 1.1: If ∥Ai −X∥ = 1 then k[i] = 2;
Step 1.2: else if ∥Ai −X∥ < 1 then k[i] = 1;
Step 1.3: else k[i] = 0;
Step 1.4: Continue Step 1;

Step 2: Rarray[1] = {k}; Nr = 1;
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Step 3: For i in {1, N} do:
Step 3.1: if k[i] = 2 then
Step 3.2: Parray = Rarray;

Step 3.3: for j in {1, Nr} do:
Step 3.3.4: Rarray[j][k] = 0; Parray[j][k] = 1; Continue Step 2.3;
Step 3.4: Add all elements of Parray to the end of the array

Rarray; Nr = Nr ∗ 2;
Step 3.5: Continue Step 2;

Step 4: STOP, return Rarray and number of its elements Nr.

The algorithm above returns a set (an array) Rarray of region indexes k such
that X ∈ Rk. Steps 1 to 1.4 form an array of digits describing the distance from
the given point to each of the demand points: digits 0,1 and 2 mean distance
more than 1, less than 1 and equal to 1, correspondingly. In Steps 3 to 3.5, array
Rarray of indexes is formed. Initially, it contains one element coinciding with the
array k formed in Steps 1 to 1.4. For each demand point having distance equal
to 1 from the given point (digit 2 in array k), array Rarray is duplicated: instead
of digit 2, digit 0 is substituted in the first copy of the initial array Rarray and
digit 1 in its second copy. Thus, array Rarray contains 2e1 indexes where e1 is
quantity of the demand points having distance equal to 1 from point X.

For any intersection point Dj , the index j is known and we can start this
algorithm for such point from Step 2 assuming k = j.

For determining the set of the neighbor intersection points for a given inter-
section point Dj , we use the following algorithm.

Algorithm 3.2. Form a list of neighbor angular points

Require: An index j∗ of the intersection point Dj∗ (here, j∗ is an array of
digits 0,1,2), a set of all intersection points Dall.

Step 1: Dneighbour = ∅;
Step 2: For each Di in calDall \ {Dj∗} do:

Comment: here, the indexes j∗ and i are considered as arrays of digits.
Step 2.1: ncommon = 0; bok = 1.
Step 2.2: For k = 1, . . . , N do:
Step 2.2.1: If i[k] = 2 and j∗[k] = 2 then ncommon = ncommon + 1; ;
Step 2.2.2: else if j∗[k] ̸= 2 and j∗[k] ̸= i[k] then bok = 0;

break Step 2.2 and go to Step 2.3.
Step 2.2.5: Continue Step 2.2.
Step 2.3: if ncommon > 0 and bok = 1 thenDneighbour = Dneighbour∪{Di}.
Step 2.4: Continue Step 2.

Step 3: STOP, return Dneighbour.

In Steps 2 to 2.4, all known intersetion points are scanned. For the indexes of
the intersection points, the notation from 3.1 is used: digit 2 in the kth position
of the index means that distance from the intersection point to the kth demand
point is equal to 1. In Steps 2.2 to 2.2.5, searching for digits 2 in indexes is
organized.
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Our algorithm for solving problem (4) is organized as follows.

Algorithm 3.3. Solving the location problem (4)

Require: Set of N demand points A with coordinates Ai = (ai1, a
i
2) of the

demand points and their weights wi, i = 1, . . . , N .
Step 1: Solve the Weber problem with Euclidean metric (5) implementing

Weiszfeld procedure, store the result to X∗.
Step 2: if ̸ ∃i ∈ {1, . . . , N} : ∥X∗ −Ai∥ ≤ 1 then STOP and return X∗.
Step 3: Determine the region Rk∗ = R(X∗) with Algorithm 3.1. The result

is index k which is an array of N digits. If a set of regions is returned
then we use the first one.

Step 4: Form the set Dall of all intersection points of the circles with centres
in Ai, i = 1, . . . , N and radius 1.

Step 5: Form the set D of all angular points (intersections) of the region Rk;
Set Dchecked = D.

Step 6: F∗∗ = +∞.
Step 7: For each element Dj of the set D do:

Step 7.1: If f(Dj) < F∗∗ then F∗∗ = f(Dj); X
∗∗ = Dj .

Step 7.2: Continue Step 7.
Step 8: bfound = 1.
Step 9: while bfound = 1 do:

Step 9.1: bfound = 0; Call Algorithm 3.2 to form the set Dneighbour of the
neighbor intersections of X∗∗.

Step 9.2: For X ′ in Dneighbour \ Dchecked do:
Step 9.2.1: If f(X ′) < F∗∗ then F∗∗ = f(X ′); bfound = 1; X∗∗ = X ′.
Step 9.3: Dchecked = Dchecked ∪ Dneighbour.
Step 9.4: Continue Step 9.

Step 10: Form the set L of regions joint by the set X∗∗ with Algorithm 3.1;
Step 11: Ltosearch = ∅.
Step 12: For each region Rk in L do:
Step 12.1: For the convex region ϱ(Rk) = Rk ∩ P(Rk), calculate two

directions (rays with initial point X) l1 and l2 tangent to
the borderline of the region Rk.

Step 12.2: If
∂fRk

∂l1
(X∗∗) ≤ 0 or

∂fRk

∂l2
(X∗∗) ≤ 0 then

Step 12.2.1: Ltosearch = Ltosearch ∪ {Rk}.
Step 12.3: Continue Step 12.

Step 13: While Ltosearch ̸= ∅ do:
Step 13.1: For each element Rk in Ltosearch do:
Step 13.1.1: Solve the constrained Weber problem (12)–(13) using the

modified Weiszfeld procedure [11, 4], store the result to X ′.
Step 13.1.2: If f(X ′) < F∗∗ then F∗∗ = f(X ′); X∗∗ = X ′; Determine

the set Rarray of regions of X ′ using Algorithm 3.1.
Ltosearch = Rarray \ Ltosearch;
break Step 13.1 and go to Step 13.2.
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Step 13.1.3: Continue Step 13.1.
Step 13.2: Continue Step 13.

Step 14: STOP and return X∗∗.

4. Numerical example

Let us solve the problem shown in Fig. 2
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Figure 2. Example problem scheme and its objective function graph.
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Here, N = 7, A1 = (0, 0.25), A2 = (0.25, 0), A3 = (0.25, 0.75), A4 =
(1.35, 0.25), A5 = (1, 0.77), A6 = (3.45, 0.2), A7 = (3.55, 0.4), w1 = w6 = 1,
w2 = 9, w3 = 4, w4 = 3, w5 = w7 = 2.

The result of Weiszfeld procedure at Step 1 of Algorithm 3.3 is

X∗ = (1.1770229, 0.375000).

At Step 2, this point is not in R0000000 since ∥A1 − X∗∥ < 1. Thus, the
algorithm goes on.

At Step 3, from ∥A1−X∗∥ < 1, ∥A2−X∗∥ < 1, ∥A3−X∗∥ < 1, ∥A5−X∗∥ < 1,
R(X∗) = R11101000.

At Step 4, our algorithm forms a set Dall of all 22 intersection points.
At Step 5, the set of angular points (intersections) of region R1110100 is

D = Dchecked = {D1212100, D1210200, D1112200}
= {(0.616995, 0.930223), (0.020905, 0.973404), (0.387208,−0.020244)}.

After Step 6 and three iterations in Steps 7 to 7.2, we have

X∗∗ = D1212100 = (0.616995, 0.930223), F∗∗ = 27.886994.

At Step 8, a boolean variable bfound is set to 1 and our algorithm start the
iteration (Step 9).

At Step 9.1, bfound is reset to 0. Algorithm 3.2 returns the list of the neighbor
intersections for D1212100:

Dneighbour = {D2012100, D1210200, D1112200, D2211100}
= {(0.675000, 0.987818), (0.020905, 0.973404),

(0.387208,−0.020244), (0.820971, 0.820971)}.

At Step 9.2 to 9.2.1, the algorithm estimates the objective function for these
intersections except D1210200, D1112200 and after these iterations, we have

X∗∗ = D2211100 = (0.820971, 0.820971), F∗∗ = 27.223985, bfound = 1.

At Step 9.3, the algorithm adds Dneighbour to the set Dchecked and we have
Dchecked = {D1212100, D1210200, D1112200, D2012100, D2211100}.

Step 9 is then repeated.
At the second iteration of Step 9.1, bfound is reset to 0. Algorithm 3.2 returns

the list of the neighbor intersections for D1212100:

Dneighbour = {D2012100, D0221100, D1212100, D212110}
= {(0.675000, 0.987818), (0.177025, 0.375000),

(0.616995, 0.930223), (0.983778, 0.070611)}.

At Step 9.2 to 9.2.1, the algorithm estimates the objective function for these
intersections except D2012100, D1212100 and after two iterations, we have

X∗∗ = D0221100 = (1.177025, 0.375000), F∗∗ = 26.209559, bfound = 1.
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At Step 9.3, Dchecked = {D1212100, D1210200, D1112200, D2012100, D2211100,
D0221100, D2121100}, Step 9 is then repeated.

At the third iteration of Step 9.1, bfound is reset to 0. Algorithm 3.2 returns
the list of the neighbor intersections for D1212100:

Dneighbour = {D0201200, D0022100, D2121100, D2211100}
= {(1.229095,−0.203404), (1.129747, 1.225443),

(0.983778, 0.070610), (0.820971, 0.820971)}.
At Step 9.2 to 9.2.1, the algorithm estimates the objective function for the

intersections D0201200 and D002210 and after two iterations, we have no improve-
ment of X∗∗ = D0221100 and F∗∗ = 26.209559.

Thus, bfound = 0 and the iterations of Step 9 finish.
At Step 10, the list of the regions joint by X∗∗ = D022110 is

L = {R0001100,R0101100,R0011100,R0111100}.
Algorithm sets Ltosearch = ∅.

In region R0001100, the direction l1 is a ray on the line connecting X∗∗ and
D0201200 (d7 in Fig. 3), l2 is a ray on the line connecting X∗∗ and D0022100 (d2
in Fig. 3).

Figure 3. Neighbor regions and directions for directional
derivatives calculations (Steps 12 to 12.3 of Algorithm 3.3).

In region R0011100, the direction l1 is a ray on the line tangent to the circle
with center in A3 (d1 in Fig. 3), l2 is a ray on the line connecting X∗∗ and
D2211100 (d4 in Fig. 3).

In region R0111100, the direction l1 is a ray on the line tangent to the circle
with center in A2 (d3 in Fig. 3), l2 is a ray on the line tangent to the circle with
center in A3 (d6 in Fig. 3).
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In region R010110, the direction l1 is a ray on the line tangent to the circle
with center in A2 (d8 in Fig. 3), l2 is a ray on the line connecting X∗∗ and
D2121100 (d5 in Fig. 3).

In Steps 12 to 12.2, our algorithm calculates all directional derivatives

∂(
∑

i∈{1,2,3,6,7}
wi||X −Ai||2)

∂d7
(X∗∗),

∂(
∑

i∈{1,2,3,6,7}
wi||X −Ai||2)

∂d2
(X∗∗),

∂(
∑

i∈{1,2,6,7}
wi||X −Ai||2)

∂d1
(X∗∗),

∂(
∑

i∈{1,2,6,7}
wi||X −Ai||2)

∂d4
(X∗∗),

∂(
∑

i∈{1,6,7}
wi||X −Ai||2)

∂d3
(X∗∗),

∂(
∑

i∈{1,6,7}
wi||X −Ai||2)

∂d6
(X∗∗),

∂(
∑

i∈{1,3,6,7}
wi||X −Ai||2)

∂d8
(X∗∗) and

∂(
∑

i∈{1,3,6,7}
wi||X −Ai||2)

∂d5
(X∗∗).

All values are positive (Step 12.2).
Thus, Ltosearch = ∅ and iterations in Steps 13 to 13.2 are not performed.
The resulting point is X∗∗ = (0.177025, 0.375000), value of the objective

function is F∗∗ = 26.209559.

5. Conclusion

The location problems for the systems with the minimum transportation cost
can be formulated as the problems with a special metric

dP (X,Y ) = min{1, ∥X − Y ∥2}.
The proposed algorithm is able to solve such problems. The implemented lo-
cal search heuristic reduces the computational complexity to the complexity of
solving few constrained and one unconstrained Weber problems with Euclidean
metric. However, the computational complexity of the proposed algorithm is
subject to the further research.
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by arcs, Facta Universitatis, (Nǐs) Ser. Math. Inform., 28 (2013), 271-284.

18. K. Klamroth, Single-facility location problems with barriers, Springer Verlag, Berlin,
Heilderberg, 2002.

19. K. Liao, D. Guo, A Clustering-Based Approach to the Capacitated Facility Location Prob-
lem, Transactions in GIS, 12 (2008), 323-339.

20. H. Minkowski, Gesammelte Abhandlungen, zweiter Band, Chelsea Publishing, 2001.
21. J. Perreur and J.F. Thisse, Central metric and optimal location, J. Regional Science, 14

(1974), 411-421.
22. I.P. Stanimirovic, Successive computation of some efficient locations of the Weber problem

with barriers, J. Appl. Math. Comput., 42 (2013), 193?11. DOI 10.1007/s12190-012-0637-x
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(2012), 31-46.

24. E. Taillard, Location problems, web resource available at http://mistic.heig-vd.ch /taillard-

/problemes.dir/location.html
25. E.D. Thaillard, Heuristic Methods for Large Centroid Clustering Problems, Journal of

Heuristics, 9 (2003), 51-73.
26. A. Vimal, S.R. Valluri, K. Karlapalem, An Experiment with Distance Measures for Clus-

tering, International Conference on Management of Data COMAD 2008, Mumbai, India,
241–244 (2008)

27. K. Voevodski, M.F. Balcan, H. Roglin, S.H. Teng, Y. Xia, Min-sum Clustering of Pro-
tein Sequences with Limited Distance Information, Proceedings of the First International

Conference on Similarity-based Pattern Recognition (SIMBAD’11), Venice, Italy (2011),
192-206.



172 Lev A. Kazakovtsev and Predrag S. Stanimirovic

28. E. Weiszfeld, Sur le point sur lequel la somme des distances de n points donnes est mini-
mum, Tohoku Mathematical Journal, 43 (1937), 335-386.

29. G. Wesolowsky, The Weber problem: History and perspectives, Location Science, 1 (1993),

5-23.
30. Y. Ying, P. Li, Distance Metric Learning with Eigenvalue Optimization, Journal of Ma-

chine Learning Research, 13 (2012), 1-26.

Lev A. Kazakovtsev was awarded the candidate of technical sciences degree at the Re-
search Institute of Control Systems, Wave Processes and Technologies (Krasnoyarsk, Rus-

sian Federation) in 2002. He is an associate professor of the Krasnoyarsk State Agrarian
University (Chair of Mathematical Modeling and Informatics) and Deputy Director of the
Department of Information Technologies of the Siberian State Aerospace University. His
research interests include the location problems, discrete optimization, random search al-

gorithms.

Department of Information Technologies, Siberian State Aerospace University named af-
ter M. F. Reshetnev, prosp. Krasnoyarskiy Rabochiy 31, Krasnoyarsk, 660093, Russian
Federation.
e-mail: levk@bk.ru

Predrag S. Stanimirovic received his M.Sc. in 1990 and Ph.D in 1996 at the Univer-
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