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AN EFFICIENT SEARCH SPACE IN COUNTING POINTS ON

GENUS 3 HYPERELLIPTIC CURVES OVER FINITE FIELDS

GYOYONG SOHN

Abstract. In this paper, we study the bounds of the coefficients of the
characteristic polynomial of the Frobenius endomorphism of the Jacobian
of dimension three over a finite field. We provide explicitly computable

bounds for the coefficients of the characteristic polynomial. In addition,
we present the counting points algorithm for computing a group of the
Jacobian of genus 3 hyperelliptic curves over a finite field with large char-
acteristic. Based on these bounds, we found an efficient search space that

was used in the counting points algorithm on genus 3 curves. The algorithm
was explained and verified through simple examples.
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1. Introduction

The problem of counting points on the Jacobian of algebraic curves over finite
fields is very important in constructing curve-based cryptosystems. In order
to obtain cryptographically suitable curves, we must determine the number of
rational points on the Jacobian. If the orders of the Jacobians are sufficiently
large prime numbers, then the corresponding cryptosystems are secure against
various attacks.

For a long time, the counting points algorithm on elliptic and hyperelliptic
curves over finite fields has been studied by numerous researchers. Schoof pro-
vided the first polynomial time algorithm for elliptic curves in all characteristics
[17]. A detailed descriptions of Schoof’s algorithm and the improvements by
Atkin and Elkies [4] can be found in [2] and [10]. In algebraic varieties over a
finite field of small characteristic, Satoh first proposed an algorithm based on
p-adic methods for elliptic curves [16]. This algorithm is asymptotically faster
than the Schoof’s like method.
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For higher genus curves, the equivalent problem seems to be much more dif-
ficult. In small characteristic, there exist efficient practical algorithms for com-
puting the number of points on the Jacobian of higher genus curves based on
theoretical progression. Kedlaya generalized Satoh’s method to hyperelliptic
curves of any genus over finite fields of odd characteristic [9]. The AGM method
generalizes to ordinary hyperelliptic curves of any genus; however, only the genus
2 case is practical. In large characteristic, Pila [14] and later Adleman and Huang
[1, 8] described a theoretical generalization of Schoof’s approach; however, the
algorithms are not practical. Currently, only the genus 2 case of this algorithm
is practical [5, 6].

Throughout this paper, we concentrate on l-adic method for genus 3 curves.
The l-adic method computes the number of points modulo sufficient small primes
l by working in l-torsion subgroups of the Jacobian. If the characteristic is
not too large, we can use the Catier-Manin operator to get additional modular
information of the Jacobian. Then, one applies Weil’s bounds on the coefficient
of the characteristic polynomial. Hence, the final result is determined using a
search algorithm such as Pollard lambda method or baby-step giant-step (BSGS)
algorithm. Matsuo, Chao, and Tsujii (MCT) proposed a BSGS algorithm that
speeds up the last computational part. Recently, Gaudry-Schost presented a low
memory version of MCT algorithm based on birthday paradox.

When implementing the practical counting points algorithm, it is important
to determine the number of candidates on the search space. It is related to
the running time of the Jacobian. In the case of genus 2 curve, Ruck provided
efficient bounds of the coefficients of the characteristic polynomial [15]. Recently,
Haloui presented the bounds of the coefficients for genus 3 curve cases [7].

In this paper, we investigate the bounds of the coefficients of the characteristic
polynomial of the Frobenius endomorphism of the Jacobian of dimension three
over a finite field. In addition, we provide efficient computable bounds of the
coefficients of the characteristic polynomial. These bounds will be used in the
search method part of the counting points algorithm. Moreover, we derive the
number of the search space for the counting points algorithm for the genus
3 curve. Based on this, we describe an algorithm that compute the order of
the Jacobian group for genus 3 hyperelliptic curves over finite fields with a large
characteristic. In the algorithm, we propose a reduced search space based on the
experimental results. Finally, we verify the usefulness of the proposed method
through some simple examples.

2. Basic Facts

Let Fq be a finite field of q = pn elements, where p is an odd prime. The
hyperelliptic curve C of genus g over Fq is given by

C : y2 = f(x),
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where f(x) is a polynomial in Fq[x] of degree 2g+1 without singular points. We
denote the Jacobian variety of a hyperelliptic curve C by JC . Then, JC(Fq) is
the group of Fq-rational points on JC .

The zeta function ζ(t, C) of C can be written as

ζ(t, C) =
L(t, C)

(1− t)(1− qt)
,

where L(t, C) is the L-polynomial of the curve. Let πq be the Frobenius en-
domorphism of C and χC(t) the characteristic polynomial of πq on the Tate
module Tl(JC)⊗Ql. Then χπq,C(t) = t2gL(1/t, C). For simplicity, we write χ(t)
instead of χπq,C(t) if the reference to the curve is clear. The polynomial χ(t)
is also called a Weil polynomial if the complex roots of χ(t) have the absolute
value

√
q.

Throughout this paper, we consider the hyperelliptic curves of genus 3 over
finite fields Fq. Then, its characteristic polynomial has the form

χ(t) = t6 − s1t
5 + s2t

4 − s3t
3 + qs2t

2 − q2s1t+ q3, (1)

for certain integers s1, s2, and s3. We obviously have ♯JC(Fq) = χ(1), i.e.,

♯JC(Fq) = 1 + q3 − s1(1 + q2) + s2(1 + q)− s3. (2)

Let Mr = (qr +1)−Nr, where Nr is the number of Fqr -rational points on C for
r = 1, 2, 3. Then, we have

s1 = M1, s2 =
1

2

(
M2

1 −M2

)
, s3 =

1

3

(
M3 −

3

2
M2M1 +

1

2
M3

1

)
.

Thus, to compute the number of Fq-rational points on JC , we need only the
values of three coefficients of the characteristic polynomial or, equivalently, the
number of points Nr for r = 1, 2, 3.

The following is a well-known inequality, the Hasse-Weil bound, that bound
♯JC(Fq):

⌈(√q − 1)2g⌉ ≤ ♯JC(Fq) ≤ ⌊(√q + 1)2g⌋.
Then, we have

|s1| ≤ 6
√
q, |s2| ≤ 15q, |s3| ≤ 20q

√
q. (3)

3. The Sharp Bounds of the Coefficients of χ(t)

In this section we investigate the efficient bounds of the coefficients of the
characteristic polynomial χ(t). S. Haloui [7] reported on the set of characteristic
polynomials of abelian varieties of dimension 3 over finite fields.

Theorem 3.1 ([7]). Let χ(t) = t6 − s1t
5 + s2t

4 − s3t
3 + qs2t

2 − q2s1t+ q3 be a
polynomial with integer coefficients. Then χ(t) is a Weil polynomial if and only
if the following conditions hold

• |s1| ≤ 6
√
q,

• 4
√
q|s1| − 9q ≤ s2 ≤ s21

3 + 3q,
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• − 2s31
27 + s1s2

3 + qs1 − 2
27 (s

2
1 − 3s2 + 9q)3/2 ≤ s3 ≤ − 2s31

27 + s1s2
3 + qs1 +

2
27 (s

2
1 − 3s2 + 9q)3/2,

• −2qs1 − 2
√
qs2 − 2q

√
q ≤ s3 ≤ −2qs1 + 2

√
qs2 + 2q

√
q.

Proof. See S Haloui [7]. �

Denote U3a (resp. L3a) the upper (resp. lower) bound of s3 in (3) of Theorem
3.1, respectively, and U3b (resp. L3b) the upper (resp. lower) bound of s3 in (4)
of Theorem 3.1, respectively. The following theorem gives an efficient choice
between the two upper (resp. lower) bounds for s3 in Theorem 3.1.

Theorem 3.2. Let χ(t) be a Weil polynomial of degree 6 defined by equation
(1). Then, the upper bound of s3 is defined as

s3 ≤ −2qs1 + 2
√
qs2 + 2q

√
q if s2 ≤ t(s1),

s3 ≤ −2s31
27

+
s1s2
3

+ qs1 +
2

27
(s21 − 3s2 + 9q)3/2 otherwise

where t(s1) = s21/4 +
√
qs1. Similarly, the lower bound of s3 is defined as

−2qs1 − 2
√
qs2 − 2q

√
q ≤ s3 if s2 ≤ r(s1),

−2s31
27

+
s1s2
3

+ qs1 −
2

27
(s21 − 3s2 + 9q)3/2 ≤ s3 otherwise.

where r(s1) = s21/4−
√
qs1.

Proof. First, we consider the upper bounds U3a and U3b of s3. The difference
between U3a and U3b is as follows:

U3a − U3b = − 1

27
s31 +

s1s2
3

+ 3qs1 − 2
√
qs2 − 2q

√
q +

2

27
(s21 − 3s2 + 9q)3/2.

If U3a − U3b = 0, then we have a line of intersection for them. After squaring
the equation, we have the following

1

27
(4
√
qs1 + s21 − 4s2)(9q − 4

√
qs1 + s2)

2 = 0.

It is imply that 4
√
qs1 + s21 − 4s2 = 0 or 9q − 4

√
qs1 + s2 = 0. Since the left

hand side of the second equation 9q−4
√
qs1+s2 = 0 is the lower bound of s2 in

(2) of Theorem 3.1, the line of intersection of U3a and U3b in the possible range
(s1, s2) is s2 = s21/4+

√
qs1. Thus we can easily check if s2 < s21/4+

√
qs1, then

U3a − U3b is positive, and if s2 > s21/4 +
√
qs1, then U3a − U3b is negative.

Similarly, we compute the difference between L3a and L3b, and if its difference
is zero, then we have the following:

1

27
(4
√
qs1 − s21 + 4s2)(9q + 4

√
qs1 + s2)

2 = 0.

Then the equation s2 = s21/4−
√
qs1 is contained within the range of s1 and s2.

It is the line of intersection for L3a and L3b. Thus, we have if L3a−L3b > 0, then
s2 > s21/4−

√
qs1, or otherwise, s2 < s21/4−

√
qs1. The proof is completed. �



An Efficient Search Space in Counting Points on Genus 3 Hyperelliptic Curves 149

Lemma 3.3. If s1 ∈ [2
√
q, 6

√
q], then the lower bound of s3 in (1) is defined as

L3a. If s1 ∈ [−6
√
q,−2

√
q], then the upper bound of s3 is defined as U3a.

Proof. For s1 ∈ [2
√
q, 6

√
q], we have r(s1) < 4

√
qs1−9q. Because of the previous

theorem, the lower bound of s3 is just defined as L3a. Similarly, we can check
the upper bound of s3 for s1 ∈ [−6

√
q,−2

√
q]. �

Now we discuss the inequalities of s3 in |s1| ≤ 2
√
q. The following theorem

shows the sharp bound of s2 with respect to s1.

Theorem 3.4. Let χ(t) be a Weil polynomial of degree 6 defined by equation
(1). Then the lower bound of s2 is defined as

−q ≤ s2 if |s1| < 2
√
q,

4
√
q|s1| − 9q ≤ s2 if |s1| ≥ 2

√
q.

Proof. If χ(t) is a Weil polynomial of degree 6 defined by equation (1), then each
coefficient of the polynomial χ(t) should satisfy the inequalities of si in Theorem
3.1 for i = 1, 2, 3.

Note that U3a = L3a = 1
27s

3
1+2qs1 at the upper boundary of s2 =

s21
3 +3q for

all s1 ∈ [−6
√
q, 6

√
q]. For s1 ≥ 0, the value of U3b is equal to L3a at the lower

boundary of s2 = 4
√
qs1 − 9q for all s1. i.e.,U3b = L3a. Similarly, U3a = L3b

at the lower boundary of s2 = −4
√
qs1 − 9q for s1 ≤ 0. From Theorem 3.2 and

Lemma 3.3, in |s1| ≥ 2
√
q, the upper bounds of s3, U3a and U3b, are always

bigger than the lower bounds of s3, L3a and L3b.
Let us consider |s1| ≤ 2

√
q. If s2 ≥ r(s1) for s1 ∈ [0, 2

√
q] and s2 ≥ t(s1) for

s1 ∈ [−2
√
q, 0], then the upper bounds of s3 are always bigger than the lower

bounds of s3. Now, let us consider 4
√
qs1 − 9q ≤ s2 ≤ r(s1) and −4

√
qs1 − 9q ≤

s2 ≤ t(s1). The line of intersection for L3b and U3b is

s3 = −2qs1, s2 = −q.

Thus if s2 < −q, then the coefficient of s3 is not satisfied with the inequalities
of both condition (3) and (4) in Theorem 3.1. The inequality of s3 in (4) can be
changed to U3b ≤ s3 ≤ L3b. Thus, the above conditions hold. �

4. Counting Points Algorithm

In this section, we describe the counting points algorithm on hyperellipitic
curves of genus 3 over finite fields with a large characteristic.

4.1. MCT Algorithm. Matsuo, Chao and Tsujii present an algorithm to
determine the order of the Jacobian for hyperelliptic curves over finite fields
using an improved BSGS method. Now, we describe the MCT algorithm for the
computational part.

Assume that the characteristic polynomial is known modulo some positive
integer m, i.e., s1, s2 and s3 are known modulo m. Denote that for i = 1, 2, 3

si = si +mti, (4)
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with si, ti ∈ Z (0 ≤ si < m). Note that si is known and ti is unknown. We
substitute (4) into (2) and denote K = 1+q3−s1(1+q2)+s2(1+q)−s3. Then,
the order of the Jacobian follows the equation

♯JC(Fq) = K − t1m(1 + q2) + t2m(1 + q)− t3m.

We should determine the values (t1, t2, t3) in order to get ♯JC(Fq). Hence,
♯JC(Fq) can be computed by finding the triples (t1, t2, t3) such that

K ·D + (−t1m(1 + q2) + t2m(1 + q)− t3m) ·D = 0, (5)

for a random element D ∈ JC(Fq). For some positive integer N to be specified,
let u, v be integers such that

t3 = u+ vN, 0 ≤ u < N. (6)

By substituting (6) into (5), ♯JC(Fq) can be computed by finding the 4-tuples
(t1, t2, u, v) such that

(K − t1m(1 + q2) + t2m(1 + q)− um) ·D = (vNm) ·D, (7)

for a random element D ∈ JC(Fq) in the corresponding ranges. These computa-
tions are terminated by searching for a collision between the LHS and the RHS
of (7) among different candidates. Moreover, the BSGS method is used in (7).
The algorithm requires the computation of O(N) group operations and storage
of O(N) group elements.

4.2. The Number of The Search Space. The value N of the previous
method is determined by the number of different candidates in the searching
space. From the Hasse-Weil bound, the number of the search space is 14, 400q3.
Thus, the value of N is approximately 120q3/2/m3/2, which is the running time
of group operations in JC .

Then, we compute the efficient value of N from the results in Section 3.
Assume that s1 is a positive integer smaller than 6

√
q (for the negative part of

s1, the computation is same because the boundaries of si are symmetrical about
s2 in dimension 3.) Let t(s1) = s21/4 +

√
qs1 and r(s1) = s21/4 − √

qs1. We
compute the two parts centered by 2

√
q of s1. For s1 ∈ [0, 2

√
q], the number of

(s1, s2, s3) is:∫ 2
√

q

0

(∫ r(s1)

−q
(U3b − L3b)ds2 +

∫ t(s1)

r(s1)
(U3b − L3a)ds2 +

∫ s21
3

+3q

t(s1)
(U3a − L3a)ds2

)
ds1 =

448

45
q3.

For s1 ∈ [2
√
q, 6

√
q], the number of (s1, s2, s3) is:∫ 6

√
q

2
√
q

(∫ t(s1)

4
√
qs1−9q

(U3b − L3a)ds2 +

∫ s21
3 +3q

t(s1)

(U3a − L3a)ds2

)
ds1 =

64

45
q3.

Thus the number of the triples (s1, s2, s3) is roughly 1024
45 q3. Moreover, the

number S of the (t1, t2, t3) is

S =
1024q3

45m3
.
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We can choose a value of N as

N ≈
√
S =

32q3/2

5m3/2
= 6.4q3/2/m3/2.

Thus the algorithm requires the computation of O(N) point multiples and mem-
ory storage. Hence, we see that the number of the search space is reduced to a
constant factor of about 18 compared with the Weil’s bound.

4.3. Gaudry-Schost Algorithm. Gaudry-Schost algorithm is a low-memory
algorithm for computing the number of the Jacobian of hyperelliptic curves over
finite fields [6]. The basic idea is the same as the kangaroo algorithm of Pollard
in the van Oorschot and Wiener formulation [13]. We now briefly describe the
Gaudry-Schost algorithm for genus 3 curves.

Let BUi (rep. BLi) be an upper (rep. lower) bound of ti for i = 1, 2, 3. From
(5), we wish to find integers (t1, t2, t3) ∈ Z3, ti ∈ [BLi, BUi], such that

D = t1 ·D1 + t2 ·D2 + t3 ·D3, (8)

where D = K ·D, D1 = (1+ q2) ·m ·D, D2 = −(1 + q) ·m ·D, and D3 = m ·D
for a random element D ∈ JC(Fq). Denote the set

V = {(n1, n2, n3) ∈ Z3 | ni ∈ [BLi, BUi] for i = 1, 2, 3}

and Mi = ⌊(BLi + BUi)/2⌋ for i = 1, 2, 3. The basic Gaudry-Schost algorithm
for this problem is as follows. The tame set is defined as

T = {(n1, n2, n3) ∈ Z3 | (n1, n2, n3) ∈ V },
and the wild set as

W = (t1 −M1, t2 −M2, t3 −M3) + T

=
{
(t1 −M1 + n1, t2 −M2 + n2, t3 −M3 + n3) ∈ Z3 | (n1, n2, n3) ∈ T

}
.

The Gaudry and Schost algorithm run a large number of (deterministic) pseu-
dorandom walk. Half the walks are ”tame walks”, which means that every ele-
ment in the walk is of the form a1 ·D1+a2 ·D2+a3 ·D3 where the integer triples
(a1, a2, a3) ∈ T (though note that with very small probability some walks will
go outside T ). The other half are ”wild walks”, which means that every element
is of the form

D̃ + b1 ·D1 + b2 ·D2 + b3 ·D3,

where the integer triples (b1, b2, b3) ∈ T and

D̃ = D −M1 ·D1 −M2 ·D2 −M3 ·D3.

Each walk proceeds until a distinguished point is hit. This distinguished point
is then stored on a server, together with the corresponding exponent vectors
(n1, n2, n3) and a flag indicating which sort of walk it was. The collusion of two
different types of walks exist if and only if ai − bi = ti − ⌊BLi−BUi

2 ⌋ for all i.
Then, we can find the triples (t1, t2, t3) such that χ(1) ·D = 0. Since a collision
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between the tame and wild walks can only occur in T ∩W , we can easily check
that ♯(T ∩W ) ∈ [ ♯V8 , ♯V ]. The following theorem shows the running time of the
Gaudry-Schost algorithm in the case of genus 3 curve.

Theorem 4.1. Given the problem by (8) and N is the number of the search
space. The expected number of group operations in the average case of the
Gaudry-Schost algorithm is 2.85

√
N .

Proof. We assume that BLi = −BUi and denote Bi for each i. Then, we
consider the following problem instance: D = t1 · D1 + t2 · D2 + t3 · D3 with
ti ∈ [−Bi, Bi] for i. The number of overlaps between T and W is

♯(T ∩W ) =
3∏

i=1

(2Bi + 1− |ti|).

Therefore, we expect only about ♯(T ∩ W )/N of the walks to be in T ∩ W .
The algorithm is based on the birthday paradox. Assume that t1, t2 and t3 are
uniformly distributed. Thus the average case expected running time is

23

N

∫ B1

t1=0

∫ B2

t2=0

∫ B3

t3=0

( ♯(T ∩W )

N

)− 1
2
√
πNdt1dt2dt3 = 26

√
π

3∏
i=1

(
√

2Bi + 1−
√

Bi + 1)

≈ 26
(
1−

1
√
2

)3√
πN = (4− 2

√
2)3

√
πN ≈ 2.85

√
N.

�

If χ is the known modulo m with m < 12
√
q, then there are many candidates

for s1, s2 and s3 which have bounds in Theorem 3.1. These bounds yield the
approximate bounds for t1, t2 and t3:

BU1 −BL1 = 12
√
q/m, BU2 −BL2 = 16q/m, BU3 −BL3 = 40q

√
q/m. (9)

Hence, the number of the search space is ♯V = 7680q3/m3. From Theorem 4.1,
the approximate value of 2.85 then yield a running time of about 249.761q3/2/m3/2

operations in JC(Fq). Compared with the MCT algorithm we lost a constant
factor of about 39.

In the case where m ≥ 12
√
q, the coefficient s1 is uniquely determined since

|s1| ≤ 6
√
q ≤ m/2. Then we only have to consider the corresponding bounds for

t2 and t3 in (9). Hence, the number of the search space is ♯V = 640q5/2/m2. In

[6], the average case running time for a genus 2 curve is approximately 2.43
√
N .

Thus the expected running time is 61.47q5/4/m group operations in JC(Fq).

This is worse than the O(q3/2/m3/2) complexity.

4.4. Reducing the Search Space. In this section, we investigate the dis-
tribution of the coefficients (s1, s2, s3) in the search space. It was up to us to
reduce the space complexity for the counting points algorithm. We first selected
10,000 random monic, square-free polynomials of degree 7 over finite fields Fp

with the small random prime p. Then, we computed the values (s1, s2, s3) for
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the corresponding curves using a well-known algorithm. Table 4.4 shows the
proportion of the curves for which each si is larger than some bound.

Table 1. Distribution of (s1, s2, s3)

s1 s2 s3
Bounds of |si| ≥ 3

√
q ≥ 2

√
q ≥ 5q ≥ 4q ≥ 3q ≥ 8q

√
q ≥ 6q

√
q ≥ 4q

√
q

Proportion 0.242 4.741 0.298 1.143 4.058 0.0186 0.255 1.734

In Table 1, for |s3| ≥ 8q
√
q, the proportion of the curves is approximately

0.0186. So, more than 99.9% of the curves have |t3| < 8q
√
q/m. Thus, we can

restrict the search space to the following bounds:

V = {(n1, n2, n3) | n1 ∈ V1, n2 ∈ V2, n3 ∈ V3},

where V1 = [−4
√
q/m, 4

√
q/m], V2 = [−q/m, 7q/m], and V3 = [−8q

√
q/m, 8q

√
q/m].

In this case, for the fixed value t3, we can easily obtain the bounds of V1 and
V2 according to the bounds in Section 3. Moreover, the overlapping factor of W
and T is at least 1/4. The number of elements in V is reduced to 1024q3/m3

so that the expected runtime is approximately 91.2q3/2/m3/2 group operations.
Therefore, we reduced the running time by a factor of 2.7 compared to the
previous running time.

For |t3| < 6q
√
q, 99.4% of the curves exists in this bound. In this case, the

overlapping factor is at least 11
192 = 0.057. If |t3| > 16q

√
q/m or, |t3| > 14q

√
q/m

and |s2| > 11q, the sets, W and T , do not overlap.

5. Experimental Results

We implemented two algorithms in C++ using Shoup’s NTL library on a
Pentium 2.13 GHz computer with less than 2 GB memory.

Example 5.1. Let prime p = 106 + 37 and C be the hyperelliptic curve given
by

f(x) = x7 + 168985x6 + 145758x5 + 68532x4 + 69904x3 + 54646x2 + 17958x+ 33627.

Using the classical counting points algorithm we easily computed the values
of s1, s2 and s3 modulo m = 1874. The curve is such that s1/

√
p ≈ −0.35,

s2/p ≈ 0.27 and s3/p
√
p ≈ −0.55, therefore it is not close to any border of the

bounds. The group of points has cardinality

♯JC(Fp) = 1000465307750115976.

Example 5.2. Let p = 26144785074025909 be a 55-bit prime and let C be the
curve defined by C : y2 = x7 + 4857394849x. The group order of the Jacobian
is given by:

17871262257190705398953923111239719349017049815284

The number of the Jacobian is of 163 bits and the total time is 259 s.
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6. Conclusions

In this paper, we have presented algorithms for computing the orders of the
Jacobian varieties of genus 3 hyperelliptic curves over finite fields. We also have
computed the efficient bound of the characteristic polynomial of the Jacobian
and determined the number of the search space. From these bounds, we have
given the number of the search space, equivalently, the number of candidates in
the counting points algorithm. We also studied the search space with the prac-
tical algorithm. Finally, we presented simple examples of random hyperelliptic
curves of genus 3 over finite fields.
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