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HIGHER ORDER INTERVAL ITERATIVE METHODS FOR

NONLINEAR EQUATIONS†

SUKHJIT SINGH∗ AND D.K. GUPTA

Abstract. In this paper, a fifth order extension of Potra’s third order it-
erative method is proposed for solving nonlinear equations. A convergence
theorem along with the error bounds is established. The method takes

three functions and one derivative evaluations giving its efficiency index
equals to 1.495. Some numerical examples are also solved and the results
obtained are compared with some other existing fifth order methods. Next,
the interval extension of both third and fifth order Potra’s method are de-

veloped by using the concepts of interval analysis. Convergence analysis of
these methods are discussed to establish their third and fifth orders respec-
tively. A number of numerical examples are worked out using INTLAB

in order to demonstrate the efficacy of the methods. The results of the
proposed methods are compared with the results of the interval Newton
method.
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1. Introduction

One of the most important and challenging problems in scientific computing
is to find efficiently the real roots of nonlinear equations. A number of applica-
tions such as Kinetic theory of gases, elasticity and other applied areas give rise
to boundary value problems which are reduced to solving nonlinear equations.
Mathematical modeling of dynamic systems leads to difference or differential
equations whose solutions usually represent the equilibrium states of the sys-
tems obtained by solving nonlinear equations. Many optimization problems also
lead to these equations. For example, the locations of extremal points of a func-
tion require finding the zeros of the derivative of that function. A lot of research
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works is carried out for this purpose. Some excellent text books such as Ortega
[10], Ostrowski [2], Traub [11], Rall [13] and many others are published for good
reviews of the most important methods [1, 3, 4, 7, 14, 17].
We have considered the problem of solving nonlinear equations

f(x) = 0 (1)

where f : R → R be a continuously differentiable function. Generally, itera-
tive methods are used to solve these equations. These methods require prior
knowledge of one or more initial guesses to the desired root. Once the initial
interval is known to contain a root, several classical methods for solving such
equations are bisection method, secant method, regula-falsi method, steffensen’s
method, Newton’s method and their variants. Bisection and regula- falsi meth-
ods are linearly convergent, secant method super-linearly convergent, whereas
Steffensen’s method and Newton’s method are quadratically convergent. Start-
ing with a suitably chosen x0 near to the root, the Newton’s method is given for
n = 0, 1, 2, . . . by

xn+1 = xn − f(xn)

f ′(xn)
, (2)

The method may fail if the initial guess is far away from the root or the derivative
being very small in the vicinity of the root. The theorems and lemmas can be
given to show its quadratically convergence. If the efficiency index [22] of an

iterative method is defined as p
1
m , where p is the order of the method and m

is the number of functions evaluations per iteration then the efficiency index of
Newton’s method is 1.414. Time to time, Newton’s method has been derived in
several ways and modified in a variety of ways. There also exists several methods
that can accelerate the order of convergence from quadratic to cubic and even
higher. Some of the well known higher order methods are Potra’s, Chebyshev’s,
Halley’s, Euler’s, Super-Halley’s methods. These methods are also important as
many applications require quick convergence of their solutions. Other important
higher order method which is a base for many more general methods is the
Ostrowski’s method [2]. The order of convergence of this method increases at
the expanse of additional function evaluations at other point iterated by the
Newton’s method. However, all numerical computations require the estimation
of errors of computation. There are two methods for this.

• Perform the method and a separate error estimation, or
• Determine a sequence of nested intervals such that each interval contains
the root. Thus, an approximation to the root along with error bounds
are obtained at the same time.

The second approach leads to the concepts of interval analysis which was for-
mally introduced by Moore[18]. In practice, interval analysis provides automat-
ically approximation to the solutions along with the rigorous error bounds on
accumulated rounding errors, approximation errors, and propagated uncertain-
ties in initial data during the process of computation. Many researchers ( see,
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[5, 9, 15, 18, 19, 20, 21]) have discussed several interval methods to find the
roots of nonlinear equations. Moore [18] established the interval extension of
Newton’s method to enclose the simple roots of nonlinear equations which con-
verges quadratically. Various forms of interval Newton method are developed by
Hansen [5], Alefeld and Herzberger [9] and Krawczyk [16]. Hansen also extended
interval Newton method for bounding the solution of system of nonlinear equa-
tions. Later, Lofti and Bakhtiari [21] have developed the interval extension of
classic King’s method using interval analysis to solve nonlinear equations. They
have also shown that interval extension of King’s method has fourth order of
convergence. Bakhtiari et al. [15] established the interval Ostrowski-type meth-
ods with guaranteed convergence of order four and six respectively. Interval
Ostrowski type methods take less number of iterations to converge to smallest
interval containing the root as compared to interval Newton method.

In this paper, a fifth order extension of Potra’s third order iterative method
is proposed for solving nonlinear equations. A convergence theorem along with
the error bounds is established. The method takes three functions and one
derivative evaluations giving its efficiency index equals to 1.495. Some numerical
examples are also solved and results obtained are compared with some other
existing fifth order methods. Next, the interval extension of both third and
fifth order Potra’s method are developed using the concepts of interval analysis.
Convergence analysis of these methods are discussed to establish their third and
fifth orders respectively. A number of numerical examples are worked out using
INTLAB in order to demonstrate the efficacy of the methods. The results of the
proposed methods are compared with the results of the interval Newton method.

This paper is organized as follows. In Section 2, we have described the ba-
sic concepts of interval analysis and notations used in this paper. In section
3, Potra’s third order method is reviewed in brief and its fifth order extension
is developed. The convergence analysis and numerical examples for it are also
provided. In Section 4, the interval extensions of Potra’s third and fifth order
methods are developed and numerical examples are also worked out to demon-
strate the applicability and efficiency of proposed interval methods. Finally,
conclusions are included in Section 5.

2. Preliminaries

In this Section, we will give some definitions, concepts and notations used in
this paper.The capital letters denote intervals and small letters denote the reals.

Definition 2.1. An interval X can be defined as

X = [x, x] = {x ∈ R : x ≤ x ≤ x}.

Let IR denote the set of all closed intervals. If X = [x, x] ∈ IR then X can

be written as X = [Xc − ∆X,Xc + ∆X], where, Xc = x+x
2 and ∆X = x−x

2
represent the midpoint and the radius of X respectively.
For X = [x, x], Y = [y, y] ∈ IR, the interval arithmetic operations over IR are
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defined as

X + Y = [x, x] + [y, y] = [x+ y, x+ y],

X − Y = [x, x]− [y, y] = [x− y, x− y],

X × Y = [x, x]× [y, y] = [min(x.y, x.y, x.y, x.y),max(x.y, x.y, x.y, x.y)],

X

Y
=

[x, x]

[y, y]
= [x, x]

[1
y
,
1

y

]
, 0 ̸∈ Y.

Definition 2.2. The distance between two intervals X = [x, x] and Y = [y, y]
is defined as

d(X,Y ) = max{|x− y|, |x− y|}.

Definition 2.3. The width of an interval X is defined as

wid(X) = x− x.

The width of an interval posseses the following nice properties.

wid(aX + bY ) = |a|wid(X) + |b|wid(Y ),

wid(XY ) = |X|wid(Y ) + |Y |wid(X),

wid
(X
Y

)
=

1

yy
(|Y |wid(X) + |X|wid(Y )), if 0 ̸∈ Y.

Definition 2.4. We say that F is an interval extension of f , if for degenerate
interval arguments, F agrees with f ,i.e. F ([x, x]) = f(x).

Definition 2.5. An interval valued function F of the interval variables X1, X2, . . . , Xn

is inclusion monotonic if

Yi ⊆ Xi, i = 1, 2, . . . , n,

implies

F (Y1, Y2, . . . , Yn) ⊆ F (X1, X2, . . . , Xn).

Definition 2.6. An interval sequence {X(k)} is nested if X(k+1) ⊆ X(k) for all
k.

We shall now state a number of Lemmas and Theorems without proofs. For
their proofs one can refer to [18].

Lemma 2.7. Every nested sequence {X(k)} converges and has the limit ∩∞
k=1{X(k)}.

Lemma 2.8. Suppose {X(k)} is such that there is a real number x ∈ X(k) for all
k. Define {Y (k)} by Y (1) = X(1) and Y (k+1) = X(k+1)∩Y (k) for all k = 1, 2, . . .
Then Y (k) is nested with limit Y , and x ∈ Y ⊆ Y (k) ∀ k.

Lemma 2.9. If f : R → R is continuously differentiable on the interval X and
0 ̸∈ F ′(X), then X either contains a simple root x∗ or no roots.



Higher order interval iterative methods for nonlinear equations 65

Theorem 2.10. Let f ∈ C(X(0)) with 0 ̸∈ F ′(X(0)) and f has exactly one
simple root x∗ ∈ X(0). Then, the sequence {X(k)} such that X(k+1) ⊂ X(k) is
said to be of order p if there exists a constant γ such that

wid(X(k+1)) ≤ γ(wid(X(k)))p.

2.1. Interval Newton method (INM). In this section, we shall briefly re-
view the interval Newton method as given by [19]. Consider the problem of
solving nonlinear equation (1), where f : R → R be a continuously differen-
tiable real valued function of a real variable x. The interval version of Newton’s
method given by (2) is as follows. Let F ′(X) be an inclusion monotonic interval
extension of f ′(x). Starting with X(0) containing the root, generate the sequence
of intervals {X(k)} for k = 0, 1, 2, . . . by

X(k+1) = X(k) ∩N(X(k)) (3)

where

N(X) = mid(X)− f(mid(X))

F ′(X)
.

The computational algorithm for (3) can be given as follows:

Algorithm 1

Require: X(0) that contains exactly one root;
tolerance TOL;
maximum number of iteration J;
functions f, f ′, F’.
for i = 0: J-1 do
Compute N(X(k)).
X(k+1) := N(X(k)) ∩X(k).
if wid(X(k+1)) ≤ TOL then
goto Ensure STEP

end if
end for

Ensure: (Xk+1); (The procedure was successful).

Theorem 2.11. If an interval X(0) contains a zero x∗ of f(x), then so does
X(k) for all k = 0, 1, 2, . . ., defined by (3). Furthermore, the intervals X(k) form
a nested sequence converging to x∗ if 0 ̸∈ F ′(X(0)).

Proof. The proof is given in [19] and therefore omitted. �

Theorem 2.12. Given a real rational function f of a single real variable x with
rational extensions F, F ′ of f, f ′, respectively, such that f has a simple zero x∗

in an interval X(0) for which F (X(0)) is defined and F ′(X(0)) is defined and
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does not contain zero i.e. 0 ̸∈ F ′(X(0)), then there is an interval X ⊆ X(0)

containing x∗ and a positive real number C such that

wid(X(k+1)) ≤ C(wid(X(k)))2.

Proof. The proof is given in [19] and therefore omitted. �

3. Potra’s third and fifth order methods in R

In this section, we shall describe in brief Potra’s [8] third order method and
its extension to fifth order method for solving nonlinear equations in R. The
well known quadratically convergent Newton’s method for solving (1) is given
by (2). The third order Potra’s method is an important and basic method for
finding a simple root of (1) and is given for n = 0, 1, 2, . . . by

yn = xn − f(xn)

f ′(xn)
,

xn+1 = yn − f(yn)

f ′(xn)
, (4)

for a suitably chosen x0 near to the root. The order of convergence of this
method is equal to 3. For the convergence analysis of the method, one can refer
to [8].

The fifth order extension of this method for finding a simple root of (1) can
be given for n = 0, 1, 2, . . . by

yn = xn − f(xn)

f ′(xn)
,

zn = yn − f(yn)

f ′(xn)
,

xn+1 = zn −
( f(xn)

f(xn)− 2f(yn)

) f(zn)

f ′(xn)
. (5)

for a suitably chosen x0 near to the root. This method is an improvement of
Potra’s method known as modified Potra’s method (MPM) with fifth order of
convergence and convergence theorem is given as follows.

Theorem 3.1. Let f : R → R has a continuous derivatives up to third order in
R. If f(x) has a simple root x∗ in R and x0 be a initial approximation near to
x∗, then the iterative scheme given by (5) satisfies the following error equation

en+1 =
(
4c42 − 2c22c3

)
e5n +O(e6n), (6)

where en = xn − x∗ and cj = ( fj(x∗)
j!f ′(x∗) ), j = 2, 3, . . .

Proof. Let en = xn − x∗ be the error in the iterate xn . Using Taylor’s series
expansion, we get

f(xn) = f ′(x∗)[en + c2e
2
n + c3e

3
n + c4e

4
n + c5e

5
n +O(e6n)],

f ′(xn) = f ′(x∗)[1 + 2c2en + 3c3e
2
n + 4c4e

3
n + 5c5e

4
n +O(e5n)].



Higher order interval iterative methods for nonlinear equations 67

Substituting f(xn) and f ′(xn) in yn = xn − f(xn)
f ′(xn)

, we get

yn = x∗ + c2e
2
n +

(
2c3 − 2c22

)
e3n +

(
4c32 − 7c2c3 + 3c4

)
e4n +O(e5n).

Now expanding f(yn) by Taylor’s series about x∗, we get

f(yn) = f ′(x∗)[(yn − x∗) + c2(yn − x∗)2 + c3(yn − x∗)3 + c4(yn − x∗)4 +O(e5n)],

= f ′(x∗)[c2e
2
n +

(
2c3 − 2c22

)
e3n +

(
5c32 − 7c2c3 + 3c4

)
e4n +O(e5n)].

Substituting yn, f
′(xn) and f(yn) in expression zn = yn − f(yn)

f ′(xn)
, we get

zn = [x∗ + 2c22e
3
n +

(
−9c32 + 7c2c3

)
e4n +O(e5k)].

Now

f(xn)

f(xn)− 2f(yn)
= [1 + 2c2en +

(
− 2c22 + 4c3

)
e2n − 2

(
2c2c3 − 3c4

)
e3n

+ 2
(
2c42 − 3c22c3 − 2c2c4 + 4c5

)
e4n − 2

(
4c52 − 14c32c3

+ 9c2c
2
3 + 5c22c4 − 2c3c4 + 2c2c5 − 5c6

)
e5n].

Again, expand f(zn) by Taylor series about x∗, we get

f(zn) = f ′(x∗)[(zn − x∗) + c2(zn − x∗)2 + c3(zn − x∗)3 + c4(zn − x∗)4 +O(e5n)],

= f ′(x∗)[2c22e
3
n +

(
−9c32 + 7c2c3

)
e4n +

(
30c42 − 44c22c3 + 6c23

+ 10c2c4
)
e5n +O(e6n)].

Substituting f ′(xn), f(zn) and
f(xn)

f(xn)−2f(yn)
in (5), we get

en+1 =
(
4c42 − 2c22c3

)
e5n +O(e6n).

�

Therefore, the order of convergence of the method given by (5) is five. It requires
three functions and one derivative evaluations, so its efficiency index is 1.495
which is similar to other fifth order methods.

3.1. Numerical Examples. In this subsection, some numerical examples are
worked out to show the efficacy of proposed method. We have considered the
following test functions with their approximate root.
a) f1(x) = x(x9 − 1)− 1 x∗ = 1.075766066086837

b) f2(x) = 2xe−1 − 2e−x + 1 x∗ = 0.422477709641236

c) f3(x) = e−x + cos(x) x∗ = 1.746139530408013

d) f4(x) = e−5x(x− 1) + x5 x∗ = 0.516153518757934

e) f5(x) = x3 + 4x2 − 10 x∗ = 1.365230013414097

f) f6(x) = (sin(x))2 − x2 + 1 x∗ = 1.404491648215341
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We have compared the results obtained by proposed method (MPM) with New-
ton’s method (NM), Potra’s method (PM) and Fang et al. [12] method (FM).
Number of iterations (NN) and number of function evaluations (NFE) taken by
these methods are presented in the following table.

Table 1. Comparison of results of MPM with those of NM, PM and FM

Functions x0
NN NFE

NM PM FM MPM NM PM FM MPM
f1 2 11 8 5 5 22 24 20 20
f2 1 5 4 2 2 10 12 12 8
f3 1 4 3 2 2 8 9 8 8
f4 1 7 5 3 3 14 15 12 12
f5 2 5 4 3 3 10 12 12 12
f6 2 5 4 3 3 10 12 12 12

It is observed that modified Potra’s method takes less number of iterations as
compared to Newton’s method and Potra’s method but gives similar results with
existing fifth order methods. The fifth order method proposed by Fang et al. [12]
requires two derivative evaluations but our method requires only one derivative
evaluation, thus, leading to less computational work.

4. Proposed interval Potra methods

In this section, the interval extensions of Potra’s third and fifth order meth-
ods for enclosing the simple roots of nonlinear equations are proposed. The
convergence theorems are established for their guaranteed convergence. The
error bounds are also derived for them.

4.1. Interval Potra method (IPM). In this subsection, we shall develop an
interval extension of Potra’s third order method and its convergence analysis
to solve (1). Let X(0) be a given interval containing the root x∗ of nonlinear
equation f(x) = 0. Let F ′(X) be an inclusion monotonic interval extension of
f ′(x). Define for k = 0, 1, 2, . . .

N(X) = mid(X)− f(mid(X))

F ′(X)
,

Y (k) = X(k) ∩N(X(k)), (7)

P (X,Y ) = mid(Y )− f(mid(Y ))

F ′(X)
.

X(k+1) = X(k) ∩ P (X(k), Y (k)), (8)

The interval Potra method (IPM) requires two functions evaluations and one
interval extension of derivative of the function per step. Its convergence analysis
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and error bounds can be given as follows. The sequence of intervals {X(k)}
generated by interval Potra method possesses the following properties.

Theorem 4.1. Suppose f ∈ C(X(0)) and 0 ̸∈ F ′(X(k)) for k = 0, 1, 2, . . . If x∗

is a root of f and x∗ ∈ X(0), then x∗ ∈ X(k) for k = 1, 2, . . . Also, the intervals
X(k) form a nested sequence of intervals converging to x∗.

Proof. Given f ∈ C(X(0)), 0 ̸∈ F ′(X(k)) for k = 0, 1, 2 . . . Since x∗ ∈ X(0)

then, by induction x∗ ∈ X(k) for k = 1, 2 . . . Also, by the Lemma (2.2), the
intervals X(k) generated by the iteration (8), form a nested sequence of intervals.
Therefore, we have, x∗ ∈ X(k) then x∗ ∈ ∩∞

k=0X
(k). �

Theorem 4.2. Suppose f ∈ C(X(0)) and 0 ̸∈ F ′(X(k)) for k = 0, 1, 2 . . .

(1) If x∗ ∈ X(0) and P (X(k), Y (k)) ⊆ X(k), then X(k) contains exactly one
root of f .

(2) If X(k) ∩ P (X(k), Y (k)) = ϕ, then X(k) contains no root of f .

Proof. To prove (1), we have f ∈ C(X(0)), x∗ ∈ X(0). Since 0 ̸∈ F ′(X(k)) for
k = 0, 1, 2 . . ., we get f is monotonic on X(k). By using Lemma (2.3), f has a
unique simple root x∗ ∈ X(k) for all k. Also, if P (X(k), Y (k)) ⊆ X(k), then by
Theorem 4.1, we have x∗ ∈ X(k). Therefore, X(k) contains exactly one root of
f . The proof of (2) follows from the fact that if P (X(k), Y (k)) ⊆ X(k) then x∗ is
the only zero of f . If X(k)∩P (X(k), Y (k)) = ϕ, this contradicts our assumptions.
Hence X(k) contains no root of f . �

If we take starting interval X(0) such that

P (X(0), Y (0)) ⊆ N(X(0)) ⊆ X(0)

then, Theorems 4.1 and 4.2 guarantee a nested sequence of intervals {X(k)}
convergent to an interval X∗ such that x∗ ∈ X(0) and X∗ = P (X∗, Y ∗) and
X∗ ⊆ X(k) for all k = 0, 1, 2, . . . Thus, the sequence {X(k)} converges to X∗

if assumptions of Theorems 4.1 and 4.2 hold. Now, we establish the theorem
regarding rate of convergence of the sequences {X(k)} generated by (8).

Theorem 4.3. Suppose f ∈ C(X(0)) with 0 ̸∈ F ′(X(0)), and f has exactly
one simple root x∗ ∈ X(0). Then, if P (X(k), Y (k)) ⊂ X(k), the sequence (8)
convergence with rate of convergence equal to three. i.e., there exists a constant
γ such that

wid(X(k+1)) ≤ γ(wid(X(k)))3.

Proof. Given f ∈ C(X(0)), 0 ̸∈ F ′(X(0)).
By using Mean value theorem on mid(X(k)) and x∗, we get

f(mid(X(k))) = f ′(ξ1)(mid(X(k))− x∗),

where, ξ1 ∈ (mid(X(k)), x∗).
Similarly, for the sequence {Y (k)}, we have

f(mid(Y (k))) = f ′(ξ2)(mid(Y (k))− x∗), (9)
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where ξ2 ∈ (mid(Y (k)), x∗).
Since, P (X(k), Y (k)) ⊆ X(k) and from (8), we have

X(k+1) = mid(Y (k))− [mid(Y (k))− x∗]f ′(ξ2)

F ′(X(k))
, (10)

Therefore,

wid(X(k+1)) ≤ |mid(Y (k))− x∗||f ′(ξ2)|wid

(
1

F ′(X(k))

)
(11)

For the sequence {Y (k)} given by (7) and using Theorem 2.6, we get

|mid(Y (k))− x∗| ≤ wid(Y (k)) ≤ (wid(X(k)))2. (12)

Let |f ′(ξ2)| ≤ M2. Also,

wid

(
1

F ′(X(k))

)
≤ wid(X(k)). (13)

Substituting (12) and (13) in (11), we get

wid(X(k+1)) ≤ M2(wid(X
(k)))3.

Taking M2 = γ, we get

wid(X(k+1)) ≤ γ(wid(X(k)))3.

�

The computational algorithm for (8) can be given as follows:

Algorithm 2

Require: X(0) that contains exactly one root;
tolerance TOL;
maximum number of iteration J;
functions f, f ′, F’.
for i = 0: J-1 do
Compute N(X(k)).
Y (k) := N(X(k)) ∩X(k).
Compute P(X(k), Y (k)).
X(k+1) := P((X(k), Y (k))) ∩X(k).
if wid(X(k+1)) ≤ TOL then
goto Ensure STEP

end if
end for

Ensure: (Xk+1); (The procedure was successful).
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4.2. Interval modified Potra method (IMPM). In this subsection, an
interval extension of Potra’s fifth order method for enclosing simple roots of
nonlinear equations is developed. Let F ′(X) be an inclusion monotone interval
extension of f ′(x). Starting with X(0) containing the root x∗, generate the
sequence of intervals {X(k)} for k = 0, 1, 2, . . . by

N(X) = mid(X)− f(mid(X))

F ′(X)
,

Y (k) = X(k) ∩N(X(k)), (14)

P (X,Y ) = mid(Y )− f(mid(Y ))

F ′(X)
,

Z(k) = X(k) ∩ P (X(k), Y (k)), (15)

µ =
f(mid(X))

[f(mid(X))− 2f(mid(Y ))]F ′(X)
, (16)

S(X,Y, Z) = mid(Z)− µf(mid(Z)).

X(k+1) = X(k) ∩ S(X(k), Y (k), Z(k)), (17)

This method requires three functions evaluations and one interval extension of
derivative of the function per step. Theorems for guaranteed convergence of
sequence of intervals generated by interval modified Potra method (17) can be
established in a similar manner as given for Theorems 4.1 and 4.2 . The following
theorem establishes its fifth order of convergence.

Theorem 4.4. Suppose f ∈ C(X(0)) with 0 ̸∈ F ′(X(0)), and f has exactly one
simple root x∗ ∈ X(0). Then, if R(X(k), Y (k), Z(k)) ⊂ X(k), the sequence (17)
converges with rate of convergence equal to five. i.e., there exists a constant δ
such that

wid(X(k+1)) ≤ δ(wid(X(k)))5.

Proof. Given f ∈ C(X(0)), 0 ̸∈ F ′(X(0)).
By using mean value theorem on mid(X(k)) and x∗, we get

f(mid(X(k))) = f ′(ξ1)(mid(X(k))− x∗),

where, ξ1 ∈ (mid(X(k)), x∗).
Similarly, for the sequence {Z(k)}, we have

f(mid(Z(k))) = f ′(ξ2)(mid(Z(k))− x∗)

where ξ2 ∈ (mid(Z(k)), x∗).
Since R(X(k), Y (k), Z(k)) ⊆ X(k), Thus from (17), we have

X(k+1) = mid(Z(k))− µf ′(ξ2)(mid(Z(k))− x∗), (18)
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Therefore,

wid(X(k+1)) ≤ |f ′(ξ2)||mid(Z(k))− x∗|wid(µ) (19)

For the sequence {Z(k)} given by (15) and using Theorem 4.3, we get

|mid(Z(k))− x∗| ≤ wid(Z(k)) ≤ γ(wid(X(k)))3. (20)

Now,

wid(µ) ≤ |f ′(ξ1)||mid(X(k))− x∗|
|f(mid(X))− 2f(mid(Y )|

wid

(
1

F ′(X(k))

)
(21)

Let |f ′(ξ1)| ≤ M1 and |f(mid(X))− 2f(mid(Y )| ≤ M3.
Therefore,

wid(µ) ≤ M1

M3
(wid(X(k)))2. (22)

Substituting (20) and (22) in (19), we get

wid(X(k+1)) ≤ M1γ

M3
(wid(X(k)))5.

Taking δ = M1γ
M3

, we get

wid(X(k+1)) ≤ δ(wid(X(k)))5.

�

The computational algorithm for (17) can be given as follows:

Algorithm 3

Require: X(0) that contains exactly one root;
tolerance TOL;
maximum number of iteration J;
functions f, f ′, F’.
for i = 0: J-1 do
Compute N(X(k)).
Y (k) := N(X(k)) ∩X(k).
Compute P(X(k), Y (k)).
Z(k) := P((X(k), Y (k))) ∩X(k).
Compute S(X(k), Y (k), Z(k)).
X(k+1) := S((X(k), Y (k), Z(k))) ∩X(k).
if wid(X(k+1)) ≤ TOL then
goto Ensure STEP

end if
end for

Ensure: (Xk+1); (The procedure was successful).
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4.3. Numerical examples. In this subsection, the same numerical examples
used in subsection (3.1) are taken to demonstrate the efficacy and applicability
of the proposed interval versions of Potra’s third and fifth order methods. All the
numerical computations have been performed in INTLAB toolbox. The results
obtained by proposed interval methods IPM, IMPM and INM are displayed
in Tables 2-7 respectively. It is observed that new methods take less number of
iterations to converge to the smallest interval containing the root x∗ as compared
to interval Newton method [19]. The stopping criteria is used either X(k+1) =
X(k) or wid(X(k)) 6 TOL, TOL = 10−15 to obtain narrowest possible interval
containing x∗.

Table 2. Comparison of number of iterations and width, X(0) = [1, 1.5]

Number of
Iterations

INM IPM IMPM

Xk wid(Xk) Xk wid(Xk) Xk wid(Xk)

1
[1.00000000000000,
1.23157901169516]

2.3 × 10−1 [1.01853906531014,
1.11350683166591]

9.4 × 10−2 [1.06661509063597,
1.09125041424363]

2.4 × 10−2

2
[1.01853906531014,
1.10215348995452]

8.4 × 10−2 [1.07468057471099,
1.07618494532801]

1.5 × 10−3 [1.07576601918926,
1.07576611951165]

1.0 × 10−7

3
[1.07180976833894,
1.08476244466504]

1.3 × 10−2 [1.07576606127736,
1.07576606792703]

6.6 × 10−9 [1.07576606608683,
1.07576606608684]

4.4 × 10−16

4
[1.07564709432121,
1.07593118087384]

2.8 × 10−4 [1.07576606608683,
1.07576606608684]

4.4 × 10−16

5
[1.07576603950219,
1.07576609732578]

5.7 × 10−8

6
[ 1.07576606608683,
1.07576606608684]

1.5 × 10−15

7
[1.07576606608683,
1.07576606608684]

4.4 × 10−16

Table 3. Comparison of number of iterations and width, X(0) = [0, 1]

Number of
Iterations

INM IPM IMPM

Xk wid(Xk) Xk wid(Xk) Xk wid(Xk)

1
[0.39479017823530,
0.44340944198504]

4.8 × 10−1 [0.39479017823530,
0.44340944198504]

2.1 × 10−2 [0.42241174430913,
0.42255244777448]

1.4 × 10−4

2
[0.42242163622163,
0.42252683549021]

1.0 × 10−4 [0.42247752539077,
0.42247785740516]

2.5 × 10−11 [0.42247770964123,
0.42247770964124]

4.4 × 10−16

3
[0.42247770952034,
0.42247770975441]

2.3 × 10−8 [0.42247770964123,
0.42247770964124]

3.3 × 10−16

4
[0.42247770964123,
0.42247770964124]

3.8 × 10−16

Table 4. Comparison of number of iterations and width, X(0) = [1, 2]

Number of
Iterations

INM IPM IMPM

Xk wid(Xk) Xk wid(Xk) Xk wid(Xk)

1
[1.71483425583505,
1.80084508200837]

8.6 × 10−2 [1.74398054028649,
1.74794282910305]

3.9 × 10−3 [1.74609967758845,
1.74615492428432]

5.5 × 10−5

2
[1.74595214614604,
1.74626541809104]

3.1 × 10−4 [1.74613953040512,
1.74613953041044]

5.3 × 10−12 [1.74613953040801,
1.74613953040802]

2.2 × 10−16

3
[1.74613952881648,
1.74613953171564]

2.8 × 10−9 [1.74613953040801,
1.74613953040802]

4.4 × 10−16

4
[1.74613953040801,
1.74613953040802]

2.2 × 10−16
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Table 5. Comparison of number of iterations and width, X(0) = [0, 1]

Number of
Iterations

INM IPM IMPM

Xk wid(Xk) Xk wid(Xk) Xk wid(Xk)

1
[0.50089022721017,
1.00000000000000]

4.9 × 10−1 [0.00000000000000,
0.72934022393758]

7.2 × 10−1 [0.36485064789316,
0.65940308753237]

2.9 × 10−1

2
[0.50089022721017,
0.51615351875342]

2.0 × 10−2 [0.16412597991183,
0.55026610606693]

3.8 × 10−1 [0.51385574720824,
0.51678114259226]

2.9 × 10−3

3
[0.50089022721017,
0.56399264308726]

6.3 × 10−2 [0.48192269271915,
0.55026610606693]

6.8 × 10−2 [0.51615351874731,
0.51615351876843]

2.1 × 10−11

4
[0.51229641243988,
0.51960737718507]

7.3 × 10−3 [0.51615290723934,
0.51615397587196]

1.0 × 10−6 [0.51615351875793,
0.51615351875794]

2.2 × 10−16

5
[0.51614832274527,
0.51615895062410]

1.0 × 10−5 [0.51615351875793,
0.51615351875794]

2.2 × 10−16

6
[0.51615351875342,
0.51615351876247]

9.0 × 10−12

7
[0.51615351875793,
0.51615351875794]

2.2 × 10−16

Table 6. Comparison of number of iterations and width, X(0) = [1, 2]

Number of
Iterations

INM IPM IMPM

Xk wid(Xk) Xk wid(Xk) Xk wid(Xk)

1
[1.28409090909090,
1.41517857142858]

1.3 × 10−1 [1.28409090909090,
1.41517857142858]

1.4 × 10−2 [1.36509211758375,
1.36553103587538]

4.4 × 10−4

2
[1.36438207994412,
1.36642685175846]

2.0 × 10−2 [1.36522611523345,
1.36523420169871]

2.0 × 10−9 [1.36523001341409,
1.36523001341410]

6.7 × 10−16

3
[1.36522985334393,
1.36523020303635]

3.4 × 10−7 [1.36523001341409,
1.36523001341410]

4.4 × 10−16

4
[1.36523001341409,
1.36523001341410]

5.3 × 10−15

5
[1.36523001341409,
1.36523001341410]

2.2 × 10−16

Table 7. Comparison of number of iterations and width, X(0) = [1, 2]

Number of
Iterations

INM IPM IMPM

Xk wid(Xk) Xk wid(Xk) Xk wid(Xk)

1
[1.22263973155080,
1.44722925199692]

2.2 × 10−1 [1.36873688097690,
1.51259806673463]

1.4 × 10−1 [1.39662811444144,
1.43228851622473]

3.5 × 10−2

2
[1.39627841884613,
1.42731522360090]

3.1 × 10−2 [1.40445707182822,
1.40457252522344]

1.1 × 10−4 [1.40449162078164,
1.40449167747577]

5.7 × 10−8

3
[ 1.40434894960459,
1.40470828106882]

4.0 × 10−4 [1.40449164821531,
1.40449164821540]

7.9 × 10−14 [1.40449164821534,
1.40449164821535]

6.6 × 10−16

4
[1.40449163858213,
1.40449165998386]

2.1 × 10−8 [ 1.40449164821534,
1.40449164821535]

8.9 × 10−16

5
[1.40449164821534,
1.40449164821535]

6.7 × 10−16

5. Conclusions

A modified fifth order Potra’s method extending the third order Potra’s
method to solve nonlinear equations and its convergence analysis is described.
Later, using the techniques of interval analysis, the interval extensions of both
third and fifth order Potra’s method along with their convergence analysis are
developed. A number of numerical examples are worked out to demonstrate the
efficacy of the proposed methods. The results obtained by the proposed interval
methods are compared with those obtained by the interval Newton method. It
is observed that these methods are better in terms of computational speed and
accuracy.
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