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MULTI-PARAMETERIZED SCHWARZ ALTERNATING

METHOD FOR 3D-PROBLEM†

SANG-BAE KIM

Abstract. The convergence rate of a numerical procedure based on Schwarz
Alternating Method(SAM) for solving elliptic boundary value problems

depends on the selection of the interface conditions applied on the in-
terior boundaries of the overlapping subdomains. It has been observed
that the Robin condition (mixed interface condition), controlled by a pa-
rameter, can optimize SAM’s convergence rate. In [7], one formulated

the multi-parameterized SAM and determined the optimal values of the
multi-parameters to produce the best convergence rate for one-dimensional
elliptic boundary value problems. Two-dimensional implementation was
presented in [8]. In this paper, we present an implementation for three-

dimensional problem.
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1. Introduction

Schwarz-type alternating methods have become some of the most important
approaches in domain decomposition techniques for solution of the boundary
value problems (BVP’s). These methods are based on a decomposition of the
BVP domain into overlapping subdomains. The original BVP is reduced to a
set of smaller BVP’s on a number of subdomains with appropriate interface
conditions on the interior boundaries of the overlapping areas, whose solutions
are coupled through some iterative scheme to produce an approximation of the
solution of the original BVP. It is known [1], [6] that under certain conditions
the sequence of the solutions of the subproblems converges to the solution of the
original problem.

One of the objectives of this research is to study a class of Schwarz alternating
methods (SAM’s) whose interface conditions are parameterized and estimate the
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values of the parameters involved that speed up the convergence of these methods
for a class of BVP’s. In the context of elliptic BVP’s the most commonly used
interface conditions are of Dirichlet type. For this class of numerical SAM, there
are several studies about the convergence, which include [10], [12], [15], [16], [13],
[2], [11], [17]. The effect of parameterized mixed interface conditions has been
considered by a number of researchers [3], [14], [5], [18]. Among them, Tang
proposed a generalized Schwarz splitting [18]. The main part of his approach to
the solution of a BVP is to use the mixed boundary condition, known as Robin
condition,

B(u) = ωu+ (1− ω)
∂u

∂n
(1)

on the artificial boundaries. In [5], a multi-parameter SAM is formulated in
which the mixed boundary conditions

Bi(u) = ωiu+ (1− ωi)
∂u

∂n
(2)

are controlled by a distinct parameter ωi for the i-th overlapping area. Fourier
analysis is applied to determine the values of ωi parameters that make the con-
vergence factor of SAM be zero.

In [7], one formulated a multi-parameter SAM at the matrix level where
the parameters αi are used to impose mixed interface conditions. The relation
between the parameters αi and ωi is given by

αi =
1− ωi

1− ωi + ωih
(3)

(Refer to [7]), where h is the grid size. One determined analytically the optimal
values of αi’s for one-dimensional(1-dim) boundary value problems, which mini-
mize the spectral radius of the block Jacobi iteration matrix associated with the
SAM matrix.

For two-dimensional (2-dim) boundary value problems [8], we used distinct
multi-parameter αi,j for each j-th grid point of the i-th interfaces of the subdo-
mains to get the best convergence, while we used a fixed parameter αi along the
i-th interfaces of the subdomains in the previous paper [7].

In this paper, we consider the case of three-dimensional (3-dim) problem.
Here we also use distinct multi-parameter αi,j,k for each (j, k)-th grid point of
the i-th interfaces of the subdomains to get sucessfully the best convergence.

In section 2, we summarize the result of the multi-parameterized SAM on 1-
dim problem, which has been presented in [7] and is nessary for notations in the
following section. In section 3, we formulate the multi-parameterized SAM on
3-dim problem where we impose distinct parameters on each grid point on the
interfaces of the subdomains. We show that the 3-dim case can be reduced to
the one-dimensional ones and obtain the optimal values of the multi-parameters
which minimize the spectral radius of the block Jacobi iteration matrix associ-
ated with the SAM matrix of 3-dim problem.
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Figure 1. An example of the κ-way decomposition of the do-
main of one dimensional boundary value problem (4).

2. Multi-Parameterized Schwarz Splitting for 1-dim problem

We consider the two-point boundary value problem:

−u′′(t) + q u(t) = f(t), t ∈ (0, 1)

u(0) = a0, u(1) = a1, (4)

with q ≥ 0 being a constant. We will formulate a numerical instance of SAM
based on a κ-way decomposition ( i.e. the number of subdomains is κ ) of the
problem domain. An example of κ-way decomposition is depicted in Figure 1.

Let Tj(x, y, z) be a j ×j tridiagonal matrix such that

Tj(x, y, z) =


x -1 0 · · · 0
-1 y -1 · · · 0
.
..

. . .
. . .

. . .
.
..

0 · · · -1 y -1

0 · · · 0 -1 z

 (5)

and let

Tj(x) ≡ Tj(x, x, x). (6)

If we discretize the problem (4) by a second order central divided difference
discretization scheme with a uniform grid of mesh size h = 1

n+1 , we obtain a
linear system

Ax = f (7)

where A = Tn(β) with β = 2 + qh2.
If we consider 3-way (κ = 3) decomposition, then Ax = f has three overlap-

ping diagonal blocks as follows.
Tm-l -F 0 0 0
-E Tl -F 0 0

0 -E Tm-2l -F 0
0 0 -E Tl -F
0 0 0 -E Tm-l



x1

x2

x3

x4

x5

 =


f1
f2
f3
f4
f5

 (8)

where Tj = Tj(β, β, β) in (5) and m and l are the numbers of nodes in each
subdomain and the overlapping regions, respectively, such that l < m−1

2 . In (8),
the matrix E have zero elements everywhere except for a 1 at the rightmost top
position and the matrix F have zero elements everywhere except for a 1 at the
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leftmost bottom position. So the matrices E and F have compatible sizes with
the following forms.

E =


0 · · · 0 1

0 · · · 0 0
..
.

..

.
..
.

0 · · · 0 0

, F =


0 0 · · · 0
..
.

..

.
..
.

0 0 · · · 0
1 0 · · · 0

 (9)

The numerical version of SAM [17] for the problem (4) is equivalent to a
block Gauss-Seidel iteration procedure for a new linear system, called Schwarz
Enhanced Matrix Equation ,

Ãx̃ = f̃ (10)

where

Ã = Ã(β) =



Tm-l -F 0 0 0 0 0

-E Tl 0 -F 0 0 0
-E 0 Tl -F 0 0 0
0 0 -E Tm-2l -F 0 0
0 0 0 -E Tl 0 -F

0 0 0 -E 0 Tl -F
0 0 0 0 0 -E Tm-l


, x̃ =



x1

x2

x′
2

x3

x4

x′
4

x5


, f̃ =



f1
f2
f2
f3
f4
f4
f5


. (11)

Ã(β) means that Ã is a function of β. Note that the solution x of (7) is obtained
from the solution x̃ of (10), vice versa. In [18], it is shown that a good choice of
the splitting of Tl’s can significantly improve the convergence of SAM. Applying
for some splittings of Tl’s into Ã in (11), we have a new equation

A′x̃ = f̃ (12)

with

A′ = A′(β, α1, α2) =



Tm-l -F 0 0 0 0 0
-E B1 C1 -F 0 0 0

-E C′
1 B′

1 -F 0 0 0
0 0 -E Tm-2l -F 0 0
0 0 0 -E B2 C2 -F
0 0 0 -E C′

2 B′
2 -F

0 0 0 0 0 -E Tm-l


(13)

where Bi, C
′
i, i = 1, 2 are some matrices such that (Bi −C ′

i) is non-singular and

Tl = Bi + Ci = B′
i + C ′

i, i = 1, 2. (14)

Note that two linear system (10) and (12) are equivalent in the sense that they
have the same solutions. If C ′

i and Ci are chosen such that they are the l × l
matrices with all zero entries except for an αi in the positions (1, 1) and (l, l),
respectively, as follows,

C ′
i =


αi 0 · · · 0
0 0 · · · 0
..
.

..

.
..
.

0 0 · · · 0

, Ci =


0 · · · 0 0
.
..

.

..
.
..

0 · · · 0 0
0 · · · 0 αi

 , (15)
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the resulting matrix A′ is given as follows

A′ = A′(β, α1, α2) =

 Tm(β, β, β-α1) -F1
′ 0

-E1
′ Tm(β-α1, β, β-α2) -F2

′

0 -E2
′ Tm(β-α2, β, β)

 (16)

where Tm(x, y, z)’s are m ×m matrices defined in (5) and Ei
′’s are the m ×m

matrices with zero elements everywhere except that

(1,m− l )-th entry = 1,
(1,m− l+1)-th entry = −αi

and Fi
′’s are the m×m matrices with zero elements everywhere except that

(m, l+1)-th entry = 1,
(m, l )-th entry = −αi.

If the number of subdomains κ is more than 3, the matrix A′ is a block κ×κ
matrix of the form

A′ = A′(β,a) =


G1 -F1

′ 0 0 · · · 0

-E1
′ G2 -F2

′ 0 · · · 0
..
.

. . .
. . .

. . .
..
.

0 · · · 0 -E′
κ-2 Gκ-1 -F ′

κ-1
0 · · · 0 0 -E′

κ-1 Gκ

 (17)

where a = (α0, α1, α2, · · · , ακ) with α0 = ακ = 0 and Gi’s are defined as

Gi = Tm(β − αi-1, β, β − αi), i = 1, 2, · · · , κ. (18)

We call the matrix A′ as Multi-Parameterized Enhanced Matrix. If we define

M=M(β,a)=


G1 0 · · · 0
0 G2 · · · 0
.
..

. . .
.
..

0 · · · 0 Gκ

 and N=N(β,a)=


0 F1

′ 0 0 · · · 0
E1

′ 0 F2
′ 0 · · · 0

.

..
. . .

. . .
. . .

.

..
0 · · · 0 E′

κ-2 0 F ′
κ-1

0 · · · 0 0 E′
κ-1 0

 (19)

with a = (α0, α1, α2, · · · , ακ), then we can write the multi-parameterized en-
hanced matrix A′ as

A′ = M −N (20)

which is called a Multi-Parameterized Schwarz Splitting (MPSS) .
The convergence behavior of MPSS depends on the spectral radius of the

following block Jacobi matrix

J = M -1N =



0 G1
-1F1

′ 0 0 · · · 0
G2
-1E1

′ 0 G2
-1F2

′ 0 · · · 0
0 G3

-1E2
′ 0 G3

-1F3
′ · · · 0

.

..
. . .

. . .
. . .

.

.

.
0 · · · 0 Gκ-1-1Eκ-2

′ 0 Gκ-1-1Fκ-1
′

0 · · · 0 0 Gκ
-1Eκ-1

′ 0


. (21)

Note that J is a function of the parameters αi’s, which correspond to the pa-
rameters ωi’s in the mixed interface condition (2), respectively. The convergence
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Figure 2. A 3-way splitting of the unit cube Ω.

rate of SAM can be optimized by controlling these parameters αi’s. In [7], one
determined the optimal values of the multi-parameter αi’s that make the spec-
tral radius of the block Jacobi matrix J in (21) to be zero. The result of [7] is
presented in the following theorem.

Theorem 2.1. Let θ = cosh-1(β2 ) with β = 2+ qh2 and let p ∈ {1, 2, · · · , κ− 1}
and let

Θ(x) ≡
{

sinh(x θ) , θ > 0
x , θ = 0.

If the values αi, i = 0, 1, · · · , κ, are given by

α0 = ακ = 0

αi =
Θ(m-l)−αi-1Θ(m-l-1)
Θ(m-l+1)−αi-1Θ(m-l) , i = 1, 2, · · · , p,

αi =
Θ(m-l)−αi+1Θ(m-l-1)
Θ(m-l+1)−αi+1Θ(m-l) , i = p+ 1, · · · , κ− 1,

then the spectral radius of the block Jacobi matrix J in (21) is zero.

3. Multi-Parameterized Schwarz Splitting for 3-dim Problem

Consider the three-dimensional boundary value problem

−∇2u(x) + q u(x) = f(x), x ∈ Ω,
u(x) = g(x), x ∈ Γ

(22)

where Γ is the boundary of Ω ≡ (0, 1)×(0, 1)×(0, 1) and q ≥ 0 is a constant. We
formulate a SAM based on a κ-way splitting of the domain Ω, i.e., we decompose
our domain into κ overlapping subdomains Ωi along the x1-axis and make a
strip-type decomposition of the cube domain Ω (for instance, see Figure 2).
Next we apply the interface conditions on the two interior boundaries between
subdomains Ωi and Ωi+1. Let ℓ be the length of the overlap in x1-direction and
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η be the length of each subdomain in the same direction. Figure 2 depicts such
a 3-way splitting of the unit cube Ω.

To begin our analysis we use a 7-point finite difference discretization scheme
with uniform grid of mesh size h = 1

n+1 on all of x1-, x2- and x3-axes and

discretize the BVP in (22) to obtain a linear system of the form

Bx = f. (23)

The natural ordering of the nodes is adopted starting from the origin and going
in the x3-direction first, and then x2- and x1-direction in turn, so that the
resulting matrix A can be partitioned into block matrices corresponding to the
subdomains, respectively. Using tensor product notation ⊗ (See [4], and [9] in
which tensor products in connection with BVP’s were introduced.), the matrix
B in (23) can be written as

B = Tn(β)⊗ In ⊗ In + In ⊗ Tn(2)⊗ In + In ⊗ In ⊗ Tn(2) (24)

where Tj(x) is defined in (6) and β = 2 + qh2.

Define l+1 = ℓ
h and m+1 = η

h such that n = κm−l(κ−1) and l < m−1
2 . The

numerical version of SAM for the problem (22) is equivalent to a block Gauss-
Seidel iteration procedure for a new linear system, called the Schwarz Enhanced
Matrix Equation ,

B̃x̃ = f̃ (25)

with

B̃ = Ã(β)⊗ In ⊗ In + Iκm ⊗ Tn(2)⊗ In + Iκm ⊗ In ⊗ Tn(2) (26)

where Iκm is the κm×κm identity matrix and Ã(β) is the κ×κ block matrix as
that defined in (11), which is the case of κ = 3. Note that each diagonal block

in Ã(β) is m×m matrix. .
Let Xn be the n × n orthogonal matrix whose columns are the eigenvectors

of the matrix Tn(2). Since the eigenvalues of the matrix Tn(2) are known to be
γi = 2 + 2 cos( iπ

n+1 ), i = 1, 2, · · · , n, we can write

XT
n Tn(2) Xn = Dn ≡ diag(γ1, γ2, · · · , γn). (27)

Let X = Iκm ⊗ In ⊗Xn, then its inverse is given by X-1 = Iκm ⊗ In ⊗XT
n , so

we have

X-1B̃X = (Iκm ⊗ In ⊗XT
n )(Ã(β)⊗ In ⊗ In)(Iκm ⊗ In ⊗Xn)

+(Iκm ⊗ In ⊗XT
n )(Iκm ⊗ Tn(2)⊗ In)(Iκm ⊗ In ⊗Xn)

+(Iκm ⊗ In ⊗XT
n )(Iκm ⊗ In ⊗ Tn(2))(Iκm ⊗ In ⊗Xn)

= (Iκm Ã(β) Iκm)⊗ In ⊗ (XT
n In Xn)

+Iκm ⊗ Tn(2)⊗ (XT
n In Xn)

+Iκm ⊗ In ⊗ (XT
n Tn(2)Xn)

= Ã(β)⊗ In ⊗ In + Iκm ⊗ Tn(2)⊗ In + Iκm ⊗ In ⊗Dn.
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If P is the permutation matrix that maps

row (i− 1)n2 + (j − 1)n+ k
into

row (k − 1)nκm+ (i− 1)n+ j

for i = 1, 2, · · · , κm, j = 1, 2, · · · , n, k = 1, 2, · · · , n, then we have

B̆ = P -1X-1B̃XP

= P -1(Ã(β)⊗ In ⊗ In)P + P -1(Iκm ⊗ Tn(2)⊗ In)P
+P -1(Iκm ⊗ In ⊗Dn)P

= In ⊗ Ã(β)⊗ In + In ⊗ Iκm ⊗ Tn(2) +Dn ⊗ Iκm ⊗ In

(28)

Note that the solution x̃ of linear system (25) is obtained by x̃ = XP x̆ if we
solve the linear system

B̆x̆ = f̆ (29)

where f̆ = P -1X-1f̃ with f̃ in (25).

Likewise, using Y = In ⊗ Iκm ⊗Xn, we have

Y -1B̆Y = (In ⊗ Iκm ⊗XT
n )(In ⊗ Ã(β)⊗ In)(In ⊗ Iκm ⊗Xn)

+(In ⊗ Iκm ⊗XT
n )(In ⊗ Iκm ⊗ Tn(2))(In ⊗ Iκm ⊗Xn)

+(In ⊗ Iκm ⊗XT
n )(Dn ⊗ Iκm ⊗ In)(In ⊗ Iκm ⊗Xn)

= In ⊗ Ã(β)⊗ (XT
n In Xn) + In ⊗ Iκm ⊗ (XT

n Tn(2)Xn)
+Dn ⊗ Iκm ⊗ (XT

n In Xn)

= In ⊗ Ã(β)⊗ In + In ⊗ Iκm ⊗Dn +Dn ⊗ Iκm ⊗ In.

If Q is the permutation matrix that maps

row (k − 1)nκm+ (i− 1)n+ j
into

row (k − 1)nκm+ (j − 1)κm+ i

for i = 1, 2, · · · , κm, j = 1, 2, · · · , n, k = 1, 2, · · · , n, then we have

B̂ = Q-1X-1B̆XQ

= Q-1(In ⊗ Ã(β)⊗ In)Q+Q-1(In ⊗ Iκm ⊗Dn)Q
+Q-1(Dn ⊗ Iκm ⊗ In)Q

= In ⊗ In ⊗ Ã(β) + In ⊗Dn ⊗ Iκm +Dn ⊗ In ⊗ Iκm
= Φ[Ã(ζj,k)] j = 1, 2, · · · , n

k = 1, 2, · · · , n

(30)

where ζj,k = β + γj + γk for j = 1, 2, · · · , n and k = 1, 2, · · · , n and

Φ[s(j,k)] j = 1, 2, · · · , n
k = 1, 2, · · · , n

= diag( diag(s(1,1), s(2,1), · · · , s(n,1)),
diag(s(1,2), s(2,2), · · · , s(n,2)),
· · · · · ·
diag(s(1,n), s(2,n), · · · , s(n,n))
)

(31)
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which represents a diagonal matrix of diagonal matrices of entries s(j,k)’s.
Note that the solution x̆ of linear system (29) is obtained by x̆ = Y Q x̂

if we solve the linear system

B̂x̂ = f̂ (32)

where
f̂ = Q -1Y -1f̆

with f̆ in (29), so that

f̂ = Q -1Y -1f̆

= Q -1Y -1(P -1X-1f̃)

with f̃ in (25). Finally x̃ in (25) is computed by

x̃ = XP x̆ = XP (Y Q x̂)

with x̂ in (32).
From (30) and (32), we know that the three-dimensional problem (25) is

reduced to n2 number of one dimensional problems

Ã(ζj,k) = f̂j,k, j = 1, 2, · · · , n, k = 1, 2, · · · , n,

where f̂j,k is the corresponding sub-vector of f̂ .

The Multi-Parameterized Schwarz Enhanced Matrix for B̂ in (30) is defined
as

B′ = Φ[A′(ζj,k,a)] j = 1, 2, · · · , n
k = 1, 2, · · · , n

(33)

where A′(x,a) is defined in (17). If we let

M = Φ[M(ζj,k,a)] j = 1, 2, · · · , n
k = 1, 2, · · · , n

N = Φ[N(ζj,k,a)] j = 1, 2, · · · , n
k = 1, 2, · · · , n

(34)

where M(x,a) and N(x,a) are defined in (19), then we can write the multi-
parameterized enhanced matrix B′ in (33) as

B′ = M −N (35)

which is called a Multi-Parameterized Schwarz Splitting (MPSS) . The conver-
gence behavior of MPSS depends on the spectral radius of the following block
Jacobi matrix

J = M -1N = Φ[Lj,k(a)] j = 1, 2, · · · , n
k = 1, 2, · · · , n

(36)

where
Lj,k(a) = M(ζj,k,a)

-1 N(ζj,k,a)

for j = 1, 2, · · · , n and for k = 1, 2, · · · , n.
In [7], one failed to determine a parameter vector a such that the spectral

radius of the block Jacobi matrix J in (36) is zero because it is not possible to
find such a parameter vector a that makes all of the spectral radii of the diagonal
blocks Lj,k(a)’s in (36) zero simultaneously.
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So instead of fixed parameter a, we adopt multi-parameter vector aj,k for
each diagonal block as follows

J = M -1N = Φ[Lj,k(aj,k)] j = 1, 2, · · · , n
k = 1, 2, · · · , n

(37)

where

aj,k = (α0,j,k, α1,j,k, α2,j,k, · · · , ακ,j,k),

for j = 1, 2, · · · , n and k = 1, 2, · · · , n. Note these triple indices (i, j, k) in
multi-parameter αi,j,k are related to the idea that one adopts variable parameter
ωi(y, z) instead of constant parameter ωi in (2) along the i-th interface, i.e., we
have

Bi(u) = ωi(y, z)u+ (1− ωi(y, z))
∂u

∂n
(38)

as the mixed interface condition on the i-th interface boundary.
Now, using these triple-index multi-parameter αi,j,k’s, we have the following

theorem for three-dimensional multi-parameterized Schwarz splitting B′ = M −
N in (35).

Theorem 3.1. For j = 1, 2, · · · , n and k = 1, 2, · · · , n, let θj,k = cosh-1(
ζj,k
2 )

with ζj,k in (30) and let p ∈ {1, 2, · · · , κ− 1} and let

Θj,k(x) ≡
{

sinh(x θj,k) , θ > 0
x , θ = 0.

If the values αi,j,k for each j = 1, 2, · · · , n and each k = 1, 2, · · · , n and each
i = 0, 1, · · · , κ are given by

α0,j,k = ακ,j,k = 0

αi,j,k =
Θj,k(m-l)−αi-1,j,kΘj,k(m-l−1)

Θj,k(m-l+1)−αi-1,j,kΘj,k(m-l) , i = 1, 2, · · · , p,

αi,j,k =
Θj,k(m-l)−αi+1,j,kΘj,k(m-l-1)
Θj,k(m-l+1)−αi+1,j,kΘj,k(m-l) , i = p+ 1, · · · , κ− 1,

then the spectral radius of the block Jacobi matrix J in (37) is zero.

4. Numerical Experiments

In this section, we present a numerical experiment to prove the result of the
previous section. we will compare the results of Multi-Parameterized SAM (MP-
SAM) with those of the Classical SAM . Consider the following model problem

−∇2u(x, y, z) = 0, (x, y, z) ∈ Ω = (0, 1)× (0, 1)× (0, 1),
u(x, y, z) = f(x, y, z), (x, y, z) ∈ Γ,

(39)

where Γ is the boundary of Ω, with solution

u(x, y, z) = sin(2πx) cos(2πy) sin(2πz).

In all the experiments, the vector with all its components 0.0 was used as
initial guess of the solution vector. The relative residual rκ is computed as the
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Table 1. The classical SAM is applied to the BVP (39).

relative residual rκ (max(err))
m l κ = 2 κ = 4 κ = 8
8 1 8.4817E-02 6.3237E-02 5.8736E-02

(7.7862E-02) (1.1697E-01) (1.9661E-01)
8 4 1.6126E-02 7.6499E-04 2.4438E-03

(3.3959E-02) (8.6187E-03) (1.9430E-03)

Table 2. The MPSAM is applied to the BVP (39).

relative residual rκ (max(err))
m l κ = 2 κ = 4 κ = 8
8 1 2.7744E-16 4.1060E-16 6.0494E-16

(1.3282E-02) (3.7107E-03) (9.9877E-04)
8 4 3.4301E-16 3.2078E-16 5.0200E-16

(1.9391E-02) (7.5565E-03) (2.4514E-03)

ratio of ℓ2-norms of the residuals of the corresponding system of equations after
κ iterations, i.e.,

rκ =
||B′x(κ) − f̂ ||2
||B′x(0) − f̂ ||2

.

Table 1 shows the relative residuals of SAM computed after κ iterations for
each number of subdomains (κ = 2, 4, 8), and number of local grids (m = 8)
and minimum and half overlaps (l = 1, 4) . Table 2 shows the performance of
MPSAM under the same conditions. It shows the optimal convergence. Indeed,
the relative residuals by MPSAM are less than 5.02 × 10−15 after κ iterations
for the case of κ subdomains.

The convergence rate is very sensitive to the computed optimal value of pa-
rameter αi,j,k’s and the symmetric choice of them (i.e. Take p = [κ/2] in Theo-
rem (3.1)) reduces the error propagation when we compute the optimal value of
parameters αi,j,k’s.
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