과제정보
연구 과제 주관 기관 : National Natural Science Foundation of China
참고문헌
- Bendat, J.S. and Piersol, A.G. (1993), Engineering applications of correlation and spectral analysis, 2nd Ed., John Wiley & Sons, New York.
- Brandon, J.A. (1997), "Structural damage identification of systems with strong nonlinearities: a qualitative identification methodology, structural damage assessment using advanced signal processing procedures", Proceedings of the International Conference on Damage Assess of Structures (DAMAS 97), University of Sheffield, UK.
- Brandon, J.A. (1999), "Towards a nonlinear identification methodology for mechanical signature analysis, damage assessment of structures", Proceedings of the International Conference on Damage Assess of Structures (DAMAS 99), Dublin, Ireland.
- Braun, S. and Feldman, M. (2011), "Decomposition of non-stationary signals into time varying scales: some aspects of the EMD and HVD methods", Mech. Syst. Signal Pr., 25(7), 2608-2630. https://doi.org/10.1016/j.ymssp.2011.04.005
- Chanpheng, T., Yamada, H., Katsuchi, H. and Sasaki, E. (2012), "Nonlinear features for damage detection on large civil structures due to earthquakes", Struct. Health Monit., 11(4), 482-488. https://doi.org/10.1177/1475921712437182
- Chen, G.D. and Wang, Z.C. (2012), "A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components", Mech. Syst. Signal Pr., 28, 258-279. https://doi.org/10.1016/j.ymssp.2011.02.002
- Daubechies, I., Lu, J.F. and Wu, H.T. (2011), "Sychnrosqueezed wavelet transform: an empirical mode decomposition-like tool", Appl. Comput. Harmon. A., 30, 243-261. https://doi.org/10.1016/j.acha.2010.08.002
- Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Dig., 30(2), 91-105. https://doi.org/10.1177/058310249803000201
- Doebling, S.W., Farrar, C.R., Prime, M.B. and Shevitz, D.W. (1996), Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics. a literature review, LA-13070-MS, UC-900, Los Alamos National Laboratory, Los Alamos, NM.
- Feldman, M. (1997), "Non-linear free-vibration identification via the Hilbert transform", J. Sound Vib., 208(3), 475-489. https://doi.org/10.1006/jsvi.1997.1182
- Feldman, M. (2006), "Time-varying vibration decomposition and analysis based on the Hilbert transform", J. Sound Vib., 295(3-5), 518-530. https://doi.org/10.1016/j.jsv.2005.12.058
- Feldman, M. (2007), "Identification of weakly nonlinearities in multiple coupled oscillators", J. Sound Vib., 303(1-2), 357-370. https://doi.org/10.1016/j.jsv.2007.01.028
- Feldman, M. (2012), "Hilbert transform methods for nonparametric identification of nonlinear time varying vibration systems", Mech. Syst. Signal Pr., DOI: 10.1016/j.ymssp.2012.09.003.
- Ghanem, R. and Romeo, F. (2000), "A wavelet-based approach for the identification of linear time-varying dynamical systems", J. Sound Vib., 234(4), 555-576. https://doi.org/10.1006/jsvi.1999.2752
- Huang, N.E., Shen, Z. and Long, S.R. (1999), "A new view of nonlinear water waves: the Hilbert spectrum", Annu. Rev. Fluid Mech., 31, 417-457. https://doi.org/10.1146/annurev.fluid.31.1.417
- Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H.(1998), "The empirical mode decomposition and Hilbert spectrum for nonlinear and non-Stationary time series analysis", P. Roy. Soc. Lond. - Series A, 454(1971), 903-995. https://doi.org/10.1098/rspa.1998.0193
- James, III, G.H., Carne, T.G. and Lauffer, J.P. (1995), "The natural excitation technique (NExT) for modal parameter extraction from operating structures", Int. J. Anal. Exper. Modal Anal., 10(4), 260-277.
- Kerschen, G., Vakakis, A.F., Lee, Y.S., McFarland, D.M. and Bergman, L.A. (2006), "Toward a fundamental understanding of the Hilbert-Huang transform in nonlinear structural dynamics", Proceedings of the IMAC-XXIV Conference & Exposition on Structural Dynamics, St. Louis, Missouri.
- Kerschen, G., Lee, Y.S., Vakakis, A.F., McFarland, D.M. and Bergman, L.A. (2006), "Irreversible passive energy transfer in coupled oscillators with essential nonlinearity", SIAM J. Appl. Math., 66(2), 648-679. https://doi.org/10.1137/040613706
- Kunnath, S.K., Mander, J.B. and Fang, L. (1997), "Parameter identification for degrading and pinched hysteretic structural concrete systems", Eng. Struct., 19(3), 224-232. https://doi.org/10.1016/S0141-0296(96)00058-2
- Li, H.N., Yi, T.H., Gu, M. and Huo, L.S. (2009), "Evaluation of earthquake-induced structural damages by wavelet transform", Prog. Natural Sci., 19(4), 461-470. https://doi.org/10.1016/j.pnsc.2008.09.002
- Lilly, J.M. and Olhede, S.C. (2010), "On the analytic wavelet transform", IEEE T. Inform. Theory, 56(8), 4135-4156. https://doi.org/10.1109/TIT.2010.2050935
- Mallat, S. (1998), A wavelet tour on signal processing, Academic Press, New York.
- Montejo, L.A. and Vidot, A.L. (2012), "Synchrosqueezed wavelet transform for frequency and damping identification from noisy signals", Smart Struct. Syst., 9(5), 441-459. https://doi.org/10.12989/sss.2012.9.5.441
- Pai, P.F. and Hu, J. (2006), "Nonlinear vibration characterization by signal decomposition", Proceedings of the IMAC-XXIV Conference & Exposition on Structural Dynamics, St. Louis, Missouri.
- Panagiotou, M., Restrepo, J. and Conte, J. (2011), "Shake table test of a 7-story full scale reinforced concrete structural wall building slice phase I: rectangular wall section", J. Struct. Eng. - ASCE, 137, 691-704. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000332
- Qian, S. and Chen, D. (1994), "Decomposition of the Wigner-Ville distribution and time-frequency distribution series", IEEE T. Signal Proces., 42(10), 2836-2842. https://doi.org/10.1109/78.324750
- Sohn, H., Farrar, C.F., Hemez, F.M., Shunk, D.D., Stinemates, D.W., Nadler, B.R. and Czarnecki, J.J. (2004), A Review of Structural Health Monitoring Literature: 1996-2001, Report LA-13976-MS, Los Alamos National Laboratory, Los Alamos, NM, USA.
- Ta, M.N. and Lardies, J. (2006), "Identification of weak nonlinearities on damping and stiffness by the continuous wavelet transform", J. Sound Vib., 293(1-2), 16-37. https://doi.org/10.1016/j.jsv.2005.09.021
- Thakur, G. and Wu, H.T. (2011), "Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples", SIAM J. Math. Anal., 43(5), 2078-2095. https://doi.org/10.1137/100798818
- Vakakis, A.F., McFarland, D.M., Bergman, L.A., Manevitch, L.I. and Gendelman, O. (2004), "Isolated resonance captures and resonance capture cascades leading to single- or multi-mode passive energy pumping in damped coupled oscillators", J. Vib. Acoust., 126(2), 235-244. https://doi.org/10.1115/1.1687397
- Van Overschee, P. and De Moor, B. (1996), Subspace identification for linear systems: theory, implementation and application, Kluwer Academic Pulisher, Dordrecht, Netherlands.
- Wang, L., Zhang, J., Wang, C. and Hu, S. (2003), "Identification of nonlinear systems through time-frequency filtering technique", J. Vib. Acoust., 125(2), 199-204. https://doi.org/10.1115/1.1545769
- Wang, Z.C. (2011), Hilbert transform applications in signal analysis and non-parametric identification of linear and nonlinear systems, Ph.D dissertation, Missouri University of Science and Technology.
- Wang, Z.C. and Chen, G.D. (2012), "A Recursive Hilbert-Huang transform method for time-varying property identification of linear shear-type buildings under base excitations", J. Eng. Mech. - ASCE, 138(6), 631-639. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000357
- Wang, Z.C., Ren, W.X. and Chen, G.D. (2013a), "Time-varying linear and nonlinear structural identification with analytical mode decomposition and Hilbert transform", J. Struct. Eng. - ASCE, 139(12), 06013001, 1-5. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000832
- Wang, Z.C., Ren, W.X. and Liu, J.L. (2013b), "A Synchrosqueezed wavelet transform enhanced by extended analytical mode decomposition method for dynamic signal reconstruction", J. Sound Vib., 332(22), 6016-6028. https://doi.org/10.1016/j.jsv.2013.04.026
- Wen, Y.K. (1976), "Method for random vibration of hysteretic systems", J. Eng. Mech. - ASCE., 102(2), 249-263.
- Wu, Z.H. and Huang, N.E. (2009), "Ensemble empirical mode decomposition: a noise-assisted data analysis method", Adv. Adaptive Data Anal., 1(1), 1-41. https://doi.org/10.1142/S1793536909000047
- Yi, T.H., Li, H.N. and Sun, H.M. (2013), "Multi-stage structural damage diagnosis method based on energy-damage theory". Smart Struct. Syst., 12(3-4), 345-361. https://doi.org/10.12989/sss.2013.12.3_4.345
- Yi, T.H., Li, H.N. and Zhao, X.Y. (2012), "Noise smoothing for structural vibration test signals using an improved wavelet thresholding technique", Sensors, 12(8), 11205-11220. https://doi.org/10.3390/s120811205
피인용 문헌
- Free and transient responses of linear complex stiffness system by Hilbert transform and convolution integral vol.17, pp.5, 2016, https://doi.org/10.12989/sss.2016.17.5.753
- Acoustic emission source location and noise cancellation for crack detection in rail head vol.18, pp.5, 2016, https://doi.org/10.12989/sss.2016.18.5.1063
- Detection and parametric identification of structural nonlinear restoring forces from partial measurements of structural responses vol.54, pp.2, 2015, https://doi.org/10.12989/sem.2015.54.2.291
- Time–frequency analysis and applications in time-varying/nonlinear structural systems: A state-of-the-art review 2018, https://doi.org/10.1177/1369433217751969
- Magnetic (ethylene-octene) elastomer composites obtained by extrusion vol.57, pp.5, 2017, https://doi.org/10.1002/pen.24446
- Damage Detection in Initially Nonlinear Structures Based on Variational Mode Decomposition vol.20, pp.10, 2015, https://doi.org/10.1142/s0219455420420092
- Review on the new development of vibration-based damage identification for civil engineering structures: 2010–2019 vol.491, pp.None, 2015, https://doi.org/10.1016/j.jsv.2020.115741
- Hilbert square demodulation and error mitigation of the measured nonlinear structural dynamic response vol.160, pp.None, 2015, https://doi.org/10.1016/j.ymssp.2021.107935