DOI QR코드

DOI QR Code

Rapid comparison of metabolic equivalence of standard medicinal parts from medicinal plants and their in vitro-generated adventitious roots using FT-IR spectroscopy

한약자원 품목별 표준시료와 기내 생산 부정근의 FT-IR 스펙트럼 기반 대사체 동등성 신속 비교

  • Ahn, Myung Suk (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Min, Sung Ran (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jie, Eun Yee (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • So, Eun Jin (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Choi, So Yeon (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Moon, Byeong Cheol (K-herb Research Center, Korea Institute of Oriental Medicine) ;
  • Kang, Young Min (K-herb Research Center, Korea Institute of Oriental Medicine) ;
  • Park, So-Young (Department of Horticultural Science, College of Agriculture, Life & Environment Science, Chungbuk University) ;
  • Kim, Suk Weon (Microbial Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 안명숙 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 민성란 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 지은이 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 소은진 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 최소연 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 문병철 (한국한의학연구원 K-herb 연구단) ;
  • 강영민 (한국한의학연구원 K-herb 연구단) ;
  • 박소영 (충북대학교 원예학과) ;
  • 김석원 (한국생명공학연구원 미생물자원센터)
  • Received : 2015.08.27
  • Accepted : 2015.09.16
  • Published : 2015.09.30

Abstract

To determine whether metabolite fingerprinting for whole cell extracts based on Fourier transform infrared (FT-IR) spectroscopy can be used to discriminate and compare metabolic equivalence, standard medicinal parts from four medicinal plants (Cynanchum wilfordii Hemsley, Atractylodes japonica Koidz, Polygonum multiflorum Thunberg and Astragalus membranaceus Bunge) and their in vitro-produced adventitious roots were analyzed by FT-IR spectroscopy. The principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) from the FT-IR spectral data showed that the whole metabolic pattern from Cynanchum wilfordii was highly similar to Astragalus membranaceus. However, Atractylodes japonica and Polygonum multiflorum showed significantly different metabolic patterns. Furthermore, adventitious roots from Cynanchum wilfordii and Astragalus membranaceus also showed similar metabolic patterns compared to their standard medicinal parts. These results clearly show that mass proliferation of adventitious roots may be applied to aquire novel supply of standard medicinal parts from medicinal plants. However, the whole metabolic pattern from adventitious roots of Atractylodes japonica and Polygonum multiflorum were not similar to their standard medicinal parts. Furthermore, FT-IR spectroscopy combined with multivariate analyses established in this study may be applied as an alternative tool to discriminate the whole metabolic equivalence from several standard medicinal parts. Thus, we suggest that these metabolic discrimination systems may be applied for metabolic standardization of herbal medicinal resources.

본 연구에서는 식물조직배양기법을 통해 생산된 부정근과 이들의 표준 한약자원 약용부위에서 추출된 전세포추출물의 FT-IR스펙트럼 분석을 통해 대사체 수준에서의 동등성을 비교 분석함으로써 보다 안전하고, 균일한 한약자원 약용부위의 대체 공급수단을 개발하고자 하였다. 이를 위해 대표적인 한약자원 품목인 백수오(Cynanchum wilfordii), 백출(Atractylodes japonica), 하수오(Polygonum multiflorum), 그리고 황기(Astragalus membranaceus) 등 4 종류 약용식물의 표준 한약자원 약용부위와 기내에서 생산된 이들의 부정근들을 FT-IR 분석에 사용하였다. FT-IR 스펙트럼 데이터의 PCA (principal component analysis)와 PLS-DA (partial least square discriminant analysis) 분석결과 백수오와 황기의 표준 약용부위 시료들 사이에서 전체 대사체 패턴이 매우 유사함을 알 수 있었다. 특히 이들 한약자원 품목들의 경우 기내생산 부정근 시료들과도 전체 대사체 패턴이 매우 유사함을 알 수 있었다. 본 결과로 미루어볼 때 백수와 황기의 경우 기내에서 대량생산된 부정근이 이들 한약자원 품목의 약용부위에 대한 새로운 공급수단으로 활용이 가능함을 보여주는 결과라 사료된다. 그러나 백출과 하수오의 부정근 시료들의 경우 전체 대사체 패턴이 이들의 표준 약용부위 시료들과 차이를 보였다. 또한 본 연구를 통하여 다양한 한약자원 품목들의 약용부위 시료들로부터 빠르고 간편하게 전체 대사체 수준에서 유사도 비교가 가능함을 알 수 있었다. 따라서 본 연구에서 확립된 FT-IR 스펙트럼기반 다변량통계분석 기술은 다양한 한약자원 약용부위 시료들의 대사체 수준 동등성을 식별하는 수단으로 활용이 가능할 것으로 기대된다. 더 나아가 본 기술이 한약자원품목들의 성분 표준화에 크게 기여할 수 있을 것으로 사료된다.

Keywords

References

  1. Fiehn O, Kopka J, Drmann P, Altmann T, Trethewey R, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157-1161 https://doi.org/10.1038/81137
  2. Goodacre R, Timmins M, Burton R, Kaderbhai N, Woodward AM, Kell DB, Rooney PJ (1998) Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144:1157-1170 https://doi.org/10.1099/00221287-144-5-1157
  3. Kim SW, Ban SH, Chung H, Cho SH, Chung HJ, Choi PS, Yoo OJ, Liu JR (2004) Taxonomic discrimination of higher plants by multivariate analysis of Fourier transform infrared spectroscopy data. Plant Cell Rep 23:246-250 https://doi.org/10.1007/s00299-004-0811-1
  4. Kim SW, Cho SH, Chung H, Liu JR (2007) Genetic discrimination between Catharanthus roseus cultivars by multivariate analysis of fourier transform infrared spectroscopy data. J Plant Biotechnology 34:201-205 https://doi.org/10.5010/JPB.2007.34.3.201
  5. Kim SW, Min SR, Kim JH, Park SK, Kim TI, Liu JR (2009) Rapid discrimination of commercial strawberry cultivars using Fourier transform infrared spectroscopy data combined by multivariate analysis. Plant Biotechnol Rep 3:87-93 https://doi.org/10.1007/s11816-008-0078-z
  6. Korea Health Industry Delvelopment Institute (2013) An Empirical Study for the Growth of Korean Traditional Medicine Industry
  7. Krishnan P, Kruger NJ, Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56:255-265
  8. Kwon YK, Kim SW, Seo JM, Woo TH, Liu JR (2011) Prediction and discrimination of taxonomic relationship within Orostachys species using FT-IR spectroscopy combined by multivariate analysis. J Plant Biotechnol 38:9-14 https://doi.org/10.5010/JPB.2011.38.1.009
  9. Kwon YK, Ahn MS, Park JS, Liu JR, In DS, Min BW, Kim SW (2014) Discrimination of cultivation ages and cultivars of ginseng leaves using Fourier transform infrared spectroscopy combined with multivariate analysis. J Ginseng Res 38:52-58 https://doi.org/10.1016/j.jgr.2013.11.006
  10. Lee KJ, Park YK, Kim JY, Jeong TK, Yun KS, Paek KY, Park SY (2015) Production of biomass and bioactive compounds from adventitious root cultures of Polygonum multiflorum using air-lift bioreactors. J Plant Biotechnol 42:34-42 https://doi.org/10.5010/JPB.2015.42.1.34
  11. Lopez-Sanchez M, Ayora-Canada MJ, Molina-Diaz A (2010) Olive fruit growth and ripening as seen by vibrational spectroscopy. J Agric Food Chem 58:82-87 https://doi.org/10.1021/jf902509f
  12. Mizukami H, Tabira Y, Ellis BE (1993) Methyl jasmonate-induced rosmarinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Plant Cell Rep 12:706-709
  13. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays in tobacco tissue culture. Physiology Plant 15: 473-493 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  14. Paek KY, Murthy HN, Hahn EJ, Zhong JJ (2009) Large scale culture of ginseng adventitious roots for production of ginsenosides. Adv Biochem Eng Biotechnol. 113:151-176
  15. Sridhar TM, Aswath CR (2014) Review on Medicinal Plants Propagation: A Comprehensive Study on Role of Natural Organic Extracts in Tissue Culture Medium. American Journal of Plant Sciences 5:3073-3088 https://doi.org/10.4236/ajps.2014.520324
  16. Timmins EM, Howell SA, Alsberg BK, Noble WC, Goodacre R (1998) Rapid differentiation of closely related Candida species and strains by pyrolysis-mass spectrometry and Fourier transform-infrared spectroscopy. J Clin Microbiol 36:367-374
  17. Trygg J, Holmes E, Londstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6:467-479
  18. Ward JL, Harris C, Lewis J, Beale MH (2003) Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 62:949-957 https://doi.org/10.1016/S0031-9422(02)00705-7
  19. Wenning M, Seiler H, Scherer S (2002) Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts. Appl Environ Microbiol 68:4717-4721 https://doi.org/10.1128/AEM.68.10.4717-4721.2002
  20. Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chem Int Lab Syst 58:109-130 https://doi.org/10.1016/S0169-7439(01)00155-1
  21. Wolkers, WF, Oliver AE, Tablin F, Crowe JH (2004) A fourier transform infrared spectroscopy study of sugar glasses. Carb Res 339:1077-1085 https://doi.org/10.1016/j.carres.2004.01.016
  22. Yazaki K, Takeda K, Tabata M (1997) Effects of methyl jasmonate on shikonin and dihydroechinofuran production in Lithospermum cell cultures. Plant Cell Physiol 38:776-782 https://doi.org/10.1093/oxfordjournals.pcp.a029235
  23. Yu KW, Gao WY, Hahn EJ, Paek KY (2002) Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochem Eng J 11:211-215 https://doi.org/10.1016/S1369-703X(02)00029-3

Cited by

  1. Rapid metabolic discrimination betweenZoysia japonicaandZoysia sinicabased on multivariate analysis of FT-IR spectroscopy vol.43, pp.2, 2016, https://doi.org/10.5010/JPB.2016.43.2.213
  2. Enhanced production of phenolic compounds in hairy root cultures of Polygonum multiflorum and its metabolite discrimination using HPLC and FT-IR methods pp.1432-0614, 2018, https://doi.org/10.1007/s00253-018-9359-9