참고문헌
- Abe K, Osakabe K, Nakayama S, et al (2005) Arabidopsis RAD51C Gene Is Important for Homologous Recombination in Meiosis and Mitosis. Plant Physiol 139:896-908 https://doi.org/10.1104/pp.105.065243
- Alonso JM, Stepanova AN, Leisse TJ, et al (2003) Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science 301:653-657 https://doi.org/10.1126/science.1086391
- An S, Park S, Jeong D-H, et al (2003) Generation and Analysis of End Sequence Database for T-DNA Tagging Lines in Rice. Plant Physiol 133:2040-2047 https://doi.org/10.1104/pp.103.030478
- Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145-149 https://doi.org/10.1016/j.tplants.2015.01.010
- Belhaj K, Chaparro-Garcia A, Kamoun S, et al (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76-84 https://doi.org/10.1016/j.copbio.2014.11.007
- Bortesi L, Fischer R (2015) The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv 33:41-52 https://doi.org/10.1016/j.biotechadv.2014.12.006
- Cary LC, Goebel M, Corsaro BG, et al (1989) Transposon mutagenesis of baculoviruses: Analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156-169 https://doi.org/10.1016/0042-6822(89)90117-7
- Endo M, Ishikawa Y, Osakabe K, et al (2006a) Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. EMBO J 25:5579-5590 https://doi.org/10.1038/sj.emboj.7601434
- Endo M, Osakabe K, Ichikawa H, Toki S (2006b) Molecular Characterization of True and Ectopic Gene Targeting Events at the Acetolactate Synthase Gene in Arabidopsis. Plant Cell Physiol 47:372-379 https://doi.org/10.1093/pcp/pcj003
- Endo M, Osakabe K, Ono K, et al (2007) Molecular breeding of a novel herbicide-tolerant rice by gene targeting. Plant J 52:157-166 https://doi.org/10.1111/j.1365-313X.2007.03230.x
- Endo M, Toki S (2014) Toward establishing an efficient and versatile gene targeting system in higher plants. Biocatal Agric Biotechnol 3:2-6
- Fu Y, Foden JA, Khayter C, et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822-826 https://doi.org/10.1038/nbt.2623
- Gaj T, Gersbach CA, Barbas III CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397-405 https://doi.org/10.1016/j.tibtech.2013.04.004
- Gao J, Wang G, Ma S, et al (2014) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99-110
- Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78:742-752 https://doi.org/10.1111/tpj.12413
- Heyer W-D, Ehmsen KT, Liu J (2010) Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44:113-139 https://doi.org/10.1146/annurev-genet-051710-150955
- Hohn B, Puchta H (2003) Some like it sticky: targeting of the rice gene Waxy. Trends Plant Sci 8:51-53
- Iida S, Terada R (2005) Modification of Endogenous Natural Genes by Gene Targeting in Rice and Other Higher Plants. Plant Mol Biol 59:205-219 https://doi.org/10.1007/s11103-005-2162-x
- Iida S, Terada R (2004) A tale of two integrations, transgene and T-DNA: gene targeting by homologous recombination in rice. Curr Opin Biotechnol 15:132-138 https://doi.org/10.1016/j.copbio.2004.02.005
- James C (2013) Global Status of Commercialized Biotech/GM Crops. ISAAA: Ithaca, NY., ISAAA Brief
- Johnson RA, Gurevich V, Filler S, et al (2014) Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta. Plant Mol Biol 87:143-156
- Kaufmann KB, Buning H, Galy A, et al (2013) Gene therapy on the move. EMBO Mol Med 5:1642-1661 https://doi.org/10.1002/emmm.201202287
- Kaul MLH, Bhan DAK (1977) Mutagenic effectiveness and efficiency of EMS, DES and gamma-rays in rice. Theor Appl Genet 50:241-246 https://doi.org/10.1007/BF00273758
- Kikuchi K, Abdel-Aziz HI, Taniguchi Y, et al (2009) Bloom DNA Helicase Facilitates Homologous Recombination between Diverged Homologous Sequences. J Biol Chem 284:26360-26367 https://doi.org/10.1074/jbc.M109.029348
- Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci 93:1156-1160 https://doi.org/10.1073/pnas.93.3.1156
- Kwon Y-I, Abe K, Endo M, et al (2013) DNA replication arrest leads to enhanced homologous recombination and cell death in meristems of rice OsRecQl4 mutants. BMC Plant Biol 13:62 https://doi.org/10.1186/1471-2229-13-62
- Kwon YI, Abe K, Osakabe K, et al (2012) Overexpression of OsRecQl4 and/or OsExo1 Enhances DSB-Induced Homologous Recombination in Rice. Plant Cell Physiol 53:2142-2152 https://doi.org/10.1093/pcp/pcs155
- Lee KY, Lund P, Lowe K, Dunsmuir P (1990) Homologous recombination in plant cells after Agrobacterium-mediated transformation. Plant Cell Online 2:415-425 https://doi.org/10.1105/tpc.2.5.415
- Liang Z, Zhang K, Chen K, Gao C (2014) Targeted Mutagenesis in Zea mays Using TALENs and the CRISPR/Cas System. J Genet Genomics 41:63-68 https://doi.org/10.1016/j.jgg.2013.12.001
- Li J-F, Norville JE, Aach J, et al (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688-691 https://doi.org/10.1038/nbt.2654
- Li T, Liu B, Spalding MH, et al (2012) High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390-392 https://doi.org/10.1038/nbt.2199
- Liu Q, Segal DJ, Ghiara JB, Barbas CF (1997) Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci 94:5525-5530 https://doi.org/10.1073/pnas.94.11.5525
- Lusser M, Parisi C, Plan D, Rodriguez-Cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30:231-239 https://doi.org/10.1038/nbt.2142
- Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348-352 https://doi.org/10.1038/336348a0
- Moritoh S, Eun C-H, Ono A, et al (2012) Targeted disruption of an orthologue of DOMAINS REARRANGED METHYLASE 2, OsDRM2, impairs the growth of rice plants by abnormal DNA methylation. Plant J 71:85-98 https://doi.org/10.1111/j.1365-313X.2012.04974.x
- Nekrasov V, Staskawicz B, Weigel D, et al (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691-693 https://doi.org/10.1038/nbt.2655
- Nimonkar AV, Ozsoy AZ, Genschel J, et al (2008) Human exonuclease 1 and BLM helicase interact to resect DNA and initiate DNA repair. Proc Natl Acad Sci 105:16906-16911 https://doi.org/10.1073/pnas.0809380105
- Nishizawa-Yokoi A, Endo M, Osakabe K, et al (2014) Precise marker excision system using an animal-derived piggyBac transposon in plants. Plant J 77:454-463 https://doi.org/10.1111/tpj.12367
- Nishizawa-Yokoi A, Nonaka S, Saika H, et al (2012) Suppression of Ku70/80 or Lig4 leads to decreased stable transformation and enhanced homologous recombination in rice. New Phytol 196:1048-1059 https://doi.org/10.1111/j.1469-8137.2012.04350.x
- Ono A, Yamaguchi K, Fukada-Tanaka S, et al (2012) A null mutation of ROS1a for DNA demethylation in rice is not transmittable to progeny. Plant J 71:564-574 https://doi.org/10.1111/j.1365-313X.2012.05009.x
-
Ozawa K, Wakasa Y, Ogo Y, et al (2012) Development of an Efficient Agrobacterium-Mediated Gene Targeting System for Rice and Analysis of Rice Knockouts Lacking Granule- Bound Starch Synthase (Waxy) and
${\beta}1$ ,2-Xylosyltransferase. Plant Cell Physiol 53:755-761 https://doi.org/10.1093/pcp/pcs016 - Paszkowski J, Baur M, Bogucki A, Potrykus I (1988) Gene targeting in plants. EMBO J 7:4021-4026
- Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57:629-637 https://doi.org/10.1387/ijdb.130194hp
- Ran FA, Hsu PD, Lin C-Y, et al (2013) Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell 154:1380-1389 https://doi.org/10.1016/j.cell.2013.08.021
- Remy S, Tesson L, Menoret S, et al (2010) Zinc-finger nucleases: a powerful tool for genetic engineering of animals. Transgenic Res 19:363-371 https://doi.org/10.1007/s11248-009-9323-7
- Schiml S, Fauser F, Puchta H (2014) The CRISPR/Cas system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80:1139-1150 https://doi.org/10.1111/tpj.12704
- Schuermann D, Molinier J, Fritsch O, Hohn B (2005) The dual nature of homologous recombination in plants. Trends Genet 21:172-181 https://doi.org/10.1016/j.tig.2005.01.002
- Schwab R, Ossowski S, Riester M, et al (2006) Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis. Plant Cell Online 18:1121-1133 https://doi.org/10.1105/tpc.105.039834
- Shan Q, Wang Y, Chen K, et al (2013a) Rapid and Efficient Gene Modification in Rice and Brachypodium Using TALENs. Mol Plant sss162
- Shan Q, Wang Y, Li J, et al (2013b) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686-688 https://doi.org/10.1038/nbt.2650
- Shukla VK, Doyon Y, Miller JC, et al (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437-441. 2 https://doi.org/10.1038/nature07992
- Singh SK, Roy S, Choudhury SR, Sengupta DN (2010) DNA repair and recombination in higher plants: insights from comparative genomics of arabidopsis and rice. BMC Genomics 11:443 https://doi.org/10.1186/1471-2164-11-443
- Symington LS, Gautier J (2011) Double-Strand Break End Resection and Repair Pathway Choice. Annu Rev Genet 45:247-271 https://doi.org/10.1146/annurev-genet-110410-132435
- Tanaka S, Ishii C, Hatakeyama S, Inoue H (2010) High efficient gene targeting on the AGAMOUS gene in an Arabidopsis AtLIG4 mutant. Biochem Biophys Res Commun 396:289-293 https://doi.org/10.1016/j.bbrc.2010.04.082
- Terada R, Johzuka-Hisatomi Y, Saitoh M, et al (2007) Gene Targeting by Homologous Recombination as a Biotechnological Tool for Rice Functional Genomics. Plant Physiol 144:846-856 https://doi.org/10.1104/pp.107.095992
- Terada R, Nagahara M, Furukawa K, et al (2010) Cre-loxP mediated marker elimination and gene reactivation at the waxy locus created in rice genome based on strong positive –negative selection. Plant Biotechnol 27:29-37 https://doi.org/10.5511/plantbiotechnology.27.29
- Terada R, Urawa H, Inagaki Y, et al (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030-1034 https://doi.org/10.1038/nbt737
- Terns MP, Terns RM (2011) CRISPR-based adaptive immune systems. Curr Opin Microbiol 14:321-327 https://doi.org/10.1016/j.mib.2011.03.005
- Townsend JA, Wright DA, Winfrey RJ, et al (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459:442-445 https://doi.org/10.1038/nature07845
- Voytas DF (2013) Plant Genome Engineering with Sequence- Specific Nucleases. Annu Rev Plant Biol 64:327-350 https://doi.org/10.1146/annurev-arplant-042811-105552
- Wang Y, Yau Y-Y, Perkins-Balding D, Thomson JG (2010) Recombinase technology: applications and possibilities. Plant Cell Rep 30:267-285
- Yamauchi T, Johzuka-Hisatomi Y, Fukada-Tanaka S, et al (2009) Homologous recombination-mediated knock-in targeting of the MET1a gene for a maintenance DNA methyltransferase reproducibly reveals dosage-dependent spatiotemporal gene expression in rice. Plant J 60:386-396 https://doi.org/10.1111/j.1365-313X.2009.03947.x
- Zhang F, Maeder ML, Unger-Wallace E, et al (2010) High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases. Proc Natl Acad Sci 107:12028-12033 https://doi.org/10.1073/pnas.0914991107
- Zhang Y, Zhang F, Li X, et al (2013) Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering. Plant Physiol 161:20-27 https://doi.org/10.1104/pp.112.205179