DOI QR코드

DOI QR Code

ADC 효과를 고려한 In-Band Full-Duplex 시스템의 신호 분석 및 성능 평가

Performance Evaluation and Signal Analysis of In-Band Full-Duplex System with ADC Effect

  • An, Changyoung (Department of Electronics Engineering, Chungbuk National University) ;
  • Ryu, Heung-Gyoon (Department of Electronics Engineering, Chungbuk National University)
  • 투고 : 2015.08.24
  • 심사 : 2015.11.05
  • 발행 : 2015.11.30

초록

본 논문에서는 IBFD(in-band full duplex)시스템에서 ADC(analog to digital converter) 효과가 고려되었을 경우의 신호 특성을 분석하고 전체적인 시스템의 성능을 평가 및 분석한다. 우선, 본 논문에서는 IBFD 시스템의 일반적인 개념에 대하여 알아본다. 그 다음 ADC 효과가 고려될 경우 ADC에 인가되는 잔류 자기간섭 신호의 크기에 따른 ADC 전후의 수신 신호 특성의 변화에 대하여 분석한다. 여기에서 1차적으로 ADC의 양자화 단계 크기가 목표 신호보다 작은 조건을 계산을 통해 파악하고 분석한다. 최종적으로 ADC 효과가 고려된 IBFD 시스템을 설계하고 성능 평가를 수행하였다. 시뮬레이션의 결과로 ADC 입력에 인가된 자기간섭 신호의 크기에 따라 양자화 단계의 크기가 목표 신호의 크기보다 작도록 ADC의 비트를 결정하여야 목표 신호에서 정보를 추출할 수 있음을 확인하였다. 또한 좋은 성능을 유지하며 효율적인 통신을 하기 위해서는 양자화 단계 크기가 대략 목표 신호 크기의 1/3보다 작아야 하는 것을 확인하였다.

In this paper, we analyze ADC effect in IBFD system. Also, we design IBFD system with ADC effect, and evaluate BER performance of the system according to power of self-interference. Firstly, we describe a fundamentals of general IBFD system. And then we calculate and analyze characteristics of desired signal before and after ADC when residual self-interference is added to desired signal after RF cancellation. In this calculation, we have confirm some conditions for selection of # of ADC bit. Finally, we design IBFD system with ADC effect, and evaluate BER performance of the system by using Simulink simulation tool. As simulation results, we have confirmed that when power of residual self-interference is high before ADC, IBFD system must use high-bit ADC for decreasing quantization step. Also, we have confirmed that quantization step should be lower than one-third of amplitude of desired signal for effective communication with good performance.

키워드

참고문헌

  1. Ministry of Science, ICT and Future Planning, Mobile data traffic statistics, 2014. 12. 1.
  2. Cisco, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2013-2018, Feb. 2014.
  3. J. I. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti, "Achieving single channel, full duplex wireless communication," in Proc. ACM MobiCom, pp. 1-12, Sept. 2010,
  4. M. Jain, J. I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti, and P. Sinha, "Practical, real-time, full duplex wireless," in Proc. MobiCom '11, pp. 301-312, Sept. 2011.
  5. M. Duarte, A. Sabharwal, V. Aggarwal, R. Jana, K. K. Ramakrishnan, C. W. Rice, and N. K. Shankaranarayanan, "Design and characterization of a fullduplex multiantenna system for wifi networks," IEEE Trans. Veh. Technol., vol. 63, no. 3, pp. 1160-1177, Mar. 2014. https://doi.org/10.1109/TVT.2013.2284712
  6. Melissa Duarte, "Full-duplex wireless: Design, implementation and characterization," Ph.D. dissertation, Dept. Electr. Comput. Eng., Rice University, Houston, TX, USA, 2012.
  7. A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman, "In-band full-duplex wireless: Challenges and opportunities," IEEE J. Sel. Areas Commun., vol. 32, no. 9, pp. 1637-1652, 2014. https://doi.org/10.1109/JSAC.2014.2330193
  8. D. Korpi, T. Riihonen, V. Syrjala, L. Anttila, M. Valkama, and R. Wichman, "Full-duplex transceiver system calculations: Analysis of ADC and linearity challenges," IEEE Trans. Wirel. Commun., vol. 13, no. 7, pp. 3821-3836, Jul. 2014. https://doi.org/10.1109/TWC.2014.2315213
  9. S. Rapuano, P. Daponte, E. Balestrieri, L. De Vito, S. J. Tilden, S. Max, and J. Blair, "ADC parameters and characteristics," IEEE Instrumentation & Measurement Mag., vol. 8, no. 5, pp. 44-54, Dec. 2005.
  10. C. An and H.-G. Ryu, "Design and performance evaluation of SSD (simultaneous single band duplex) system using RF cancellation and digital cancellation," ICTC, pp. 960-963, Oct. 2014.
  11. C. An and H.-G. Ryu, "Design and performance improvement of simultaneous single band duplex system using turbo equalizer," J. KICS, vol. 39, no. 1, pp. 28-35, Jan. 2014.