DOI QR코드

DOI QR Code

카본 CCL에 의한 PCB의 열전달 특성 연구

A Study on Heat Transfer Characteristics of PCBs with a Carbon CCL

  • 투고 : 2015.10.23
  • 심사 : 2015.12.24
  • 발행 : 2015.12.30

초록

본 논문에서는 PCB용 카본 CCL의 열전달 특성을 실험과 수치해석을 통해 연구하였는데 카본 CCL의 특성 연구를 위해 기존 FR-4 코어와 Heavy copper 코어를 적용한 PCB를 비교하였다. 열전달특성 분석을 위해 코어는 한 개와 두 개가 적용된 HDI PCB 샘플이 제작되었고, 카본코어는 Pan grade와 pitch grade의 2종이 적용되었으며, 코어 두께에 의한 열전달 특성도 평가되었다. 연구결과에 의하면 카본 코어의 열전달 특성은 heavy copper 코어보다는 낮으나 FR-4 코어보다는 우수하였다. 또한, 카본 코어와 heavy copper 코어는 두께가 증가할수록 열전달 특성이 높아졌으나 FR-4 코어는 두께가 증가할수록 열전달 특성이 낮아졌다. heavy copper 코어 적용시 드릴마모도 증가, 무게 증가, 전기절연성 확보를 위한 절연재의 추가로 원가상승을 고려할 때 카본 코어가 PCB의 열전달 특성 향상을 위한 대안이 될 것으로 판단된다.

In this paper, the heat transfer characteristics of PCB (Printed Circuit Board) with cabon CCL (Copper Claded Layer) were studied through experiments and numerical analysis to compare of PCBs with conventional the FR-4 core and heavy copper cores. For study, samples are producted with HDI (High Density Interconnection) PCB of mobile phone with variations of thickness of core materials and grades of carbon material to evaluate heat transfer characteristics respectively. From this research results, heat transfer characteristics of the carbon core was rather low than heavy copper, but better than FR-4 core. In addition, even though the carbon and heavy copper core contributed on the heat transfer characteristics as their thickness increases, FR-4 cores disturbed heat transfer characteristics as it's thickness increases. Therefore, carbon core is recommendable to improve the heat transfer characteristics of the PCB because heavy copper core has much disadvantages such as increasing of wear of drill, the weight of PCB, and manufacturing cost by additional insulation materials for electrical insulation.

키워드

참고문헌

  1. A. Bar-Cohen, "Thermal management of microelectronics in the 21st century", IEEE/CPMT Electron Packaging Technology Conference, 29 (1997).
  2. Q. Zou, Y. Miao, Y. Chen, U. Sridhar, C. S. Chong, T. Chai, Y. Tie, C. H. L. Teh, T. M. Lim and C. K. Heng, "Microassembled multi-chamber thermal cycler for low-cost reaction chip thermal multiplexing", Sensors and Actuators A: Physical, 102(1-2), 114 (2002). https://doi.org/10.1016/S0924-4247(02)00384-9
  3. Z. Zhao, "Thermal design of a broadband communication system with detailed modeling of TBGA packages," Microelectron. Reliab., 43(5), 785 (2003). https://doi.org/10.1016/S0026-2714(03)00029-5
  4. T. Zhou, M. Hundt, C. Vila, R. Bond and T. Lao, "Thermal Study for Flip Chip on FR-4 Boards", Proc. 47th Electronic Componets and Technology Conference (ECTC), 879 (1997).
  5. S. R. J. Axelsson, "Improved Fourier modelling of soil temperature using the fast Fourier transform algorithm", IEEE T. Geoscience and Remote Sensing, 1, 79 (1997).
  6. S. H. Cho ans J. Y. Lee, "Heat dissipation of printed circuit board by the high thermal conductivity of photo-imageable solder resist", Electronic Materials Letters., 6(4), 167 (2011). https://doi.org/10.3365/eml.2010.12.167
  7. S. H. Cho, "Heat dissipation effect of Al plate embedded substrate in network system", Microelectronics Reliability, 48(10), 1696 (2008). https://doi.org/10.1016/j.microrel.2008.04.018
  8. X. J. Fan, "Combined thermal and thermomechanical modeling for a multichip QFN package with metal-core printed circuit board", The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), 2, 377 (2004).
  9. X. J. Fan and S. Haque, "Emerging MOSFET packaging technologies and their thermal evaluation", Proc. 8th Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), San Diego, 1102 (2002).
  10. R. Lee, "An Investigation of Thermal Enhancement on Flip Chip Plastic BGA Packages Using CFD Tool", IEEE Transactions on Components and Packaging Technologies, 23(3), 481 (2000). https://doi.org/10.1109/6144.868847
  11. J. Lohan, V. Eveloy and P. Rodgers, "Visualization of Forced Air Flows over a Populated Printed Circuit Board and Their Impact on Convective Heat Transfer", Proc. 8th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), San diego, 501, IEEE (2002).
  12. B. Chamber, T.-Y. T. Lee and W. Blood, "Steady State and Trasient Thermal Analysis of Chip Scale Packages", Journal of Electronics Manufacturing, 9(2), 131 (1999). https://doi.org/10.1142/S0960313199000064
  13. S. H. Cho and E. T. Chang, "Thermo-mechanical Behavior Characteristic Analysis of B2it(Buried Bump Interconnection Technology) in PCB (Printed Circuit Board)", J. Microelectron. Packag. Soc., 19(3), 57 (2009). https://doi.org/10.6117/kmeps.2012.19.3.057
  14. MARC 2014 user manual, Volume A : Theory and user information, (2014).

피인용 문헌

  1. 실험 및 수치해석을 이용한 SLP (Substrate Like PCB) 기술에서의 마이크로 비아 신뢰성 연구 vol.27, pp.1, 2015, https://doi.org/10.6117/kmeps.2020.27.1.0045