DOI QR코드

DOI QR Code

Column Bioleaching of Arsenic from Mine Tailings Using a Mixed Acidophilic Culture: A Technical Feasibility Assessment

혼합 호산성 박테리아를 이용한 광미로부터 비소의 Column Bioleaching : 기술적 평가

  • Borja, Danilo (Department of Mineral Resources and Energy Engineering, Chonbuk National University) ;
  • Lee, Eunseong (Department of Mineral Resources and Energy Engineering, Chonbuk National University) ;
  • Silva, Rene A. (Department of Mineral Resources and Energy Engineering, Chonbuk National University) ;
  • Kim, Heejae (Department of Mineral Resources and Energy Engineering, Chonbuk National University) ;
  • Park, Jay Hyun (Geotechnics and Recycling Technology Division, Institute of Mine Reclamation Technology) ;
  • Kim, Hyunjung (Department of Mineral Resources and Energy Engineering, Chonbuk National University)
  • ;
  • 이은성 (전북대학교 자원.에너지공학과) ;
  • ;
  • 김희재 (전북대학교 자원.에너지공학과) ;
  • 박제현 (한국광해관리공단 광해기술연구소) ;
  • 김현중 (전북대학교 자원.에너지공학과)
  • Received : 2015.11.23
  • Accepted : 2015.12.15
  • Published : 2015.12.30

Abstract

Heap bioleaching for detoxification of mine tailings is a promising technology; however, long-term studies that aim to understand the potential of this process are scarce. Therefore, this study assesses the feasibility of column bioleaching as an alternative technology for treatment of mine tailings with high concentrations of arsenic during a long-term experiment (436 days). To accomplish this objective, we designed a 350-mm plastic column that was packed with 750 g of mine tailings and inoculated with an acidophilic bacterial culture composed of A. thiooxidans and A. ferrooxidans. Redox potential, pH, ferric ion generation, and arsenic concentration of the off-solution were continuously monitored to determine the efficiency of the technology. After 436 days, we obtained up to 70% arsenic removal. However, several drops in removal rates were observed during the process; this was attributed to the harmful effect of arsenic on the bacteria consortium. We expect that this article will serve as a technical note for further studies on heap bioleaching of mine tailings.

광미의 처리를 위한 heap bioleaching은 유망 기술이나 이 과정을 오랜 기간 수행한 연구는 부족한 상황이다. 본 연구는 약 436일 동안의 column bioleaching실험을 통해, 광미에서 고농도 비소의 제거특성을 평가하였다. 높이 350 mm의 플라스틱 column에 750 g의 광미와 A. thiooxidans 및 A. ferrooxidans로 구성된 호산성 박테리아를 접종하여 실험을 진행하였다. 비소제거 효율을 확인하고, 그 관련 기작을 이해하고자 침출액의 산화 환원전위와 pH, 액중 철 이온(ferrous와 ferric)의 생성 및 비소 농도를 측정하였다. 실험 436일 후, 비소의 제거율을 약 70%까지 달성 할 수 있었다. 하지만, 부분적으로 침출율이 감소하는 경향을 확인할 수 있었고, 이는 비소의 독성으로 인한 박테리아 군집의 활성도 저하에 의한 것으로 판단되었다. 본 연구의 결과는 향후 광미의 heap bioleaching 연구를 위한 기초 자료로서 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Brierley, C.L., 2008 : How will biomining be applied in future?, Transactions of Nonferrous Metals Society of China, 18(6), pp. 1302-1310. https://doi.org/10.1016/S1003-6326(09)60002-9
  2. Patra, A.K., et al., 2011 : Review on bioleaching of uranium from low-grade ore, Journal of The Korean Institute of Resources Recycling, 20(2), pp. 30-44. https://doi.org/10.7844/kirr.2011.20.2.030
  3. Pradhan, N., et al., 2008 : Heap bioleaching of chalcopyrite: a review., Minerals Engineering, 21(5), pp. 355-365. https://doi.org/10.1016/j.mineng.2007.10.018
  4. Petersen, J. and Dixon, D.G., 2002 : Thermophilic heap leaching of a chalcopyrite concentrate., Minerals Engineering, 15(11), pp777-785. https://doi.org/10.1016/S0892-6875(02)00092-4
  5. Watling, H.R., 2006 : The bioleaching of sulphide minerals with emphasis on copper sulphides-a review., Hydrometallurgy, 84(1), pp81-108. https://doi.org/10.1016/j.hydromet.2006.05.001
  6. Yoo, K. and Kim, H., 2012 : Development of Ammoniacal Leaching Processes; A Review., Journal of the Korean Institute of Resources Recycling, 21(5), pp3-17. https://doi.org/10.7844/KIRR.2012.21.5.3
  7. Lee, E. et al., 2015 : Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans, Journal of Environmental Management, 147(0), pp124-131. https://doi.org/10.1016/j.jenvman.2014.08.019
  8. Lee, K.Y., et al., 2009 : A novel combination of anaerobic bioleaching and electrokinetics for arsenic removal from mine tailing soil., Environmental science & technology, 43(24), pp9354-9360. https://doi.org/10.1021/es901544x
  9. Qiu, M., et al., 2005 : A comparison of bioleaching of chalcopyrite using pure culture or a mixed culture., Minerals Engineering, 18(9), pp987-990. https://doi.org/10.1016/j.mineng.2005.01.004
  10. Fu, B., et al., 2008 : Bioleaching of chalcopyrite by pure and mixed cultures of Acidithiobacillus spp. and Leptospirillum ferriphilum., International Biodeterioration & Biodegradation, 62(2), pp109-115. https://doi.org/10.1016/j.ibiod.2007.06.018
  11. Akcil, A., Ciftci, H., and Deveci, H., 2007 : Role and contribution of pure and mixed cultures of mesophiles in bioleaching of a pyritic chalcopyrite concentrate., Minerals Engineering, 20(3), pp310-318. https://doi.org/10.1016/j.mineng.2006.10.016
  12. Seh-Bardan, B.J., et al., 2012 : Column bioleaching of arsenic and heavy metals from gold mine tailings by Aspergillus fumigatus., CLEAN-Soil, Air, Water, 40(6), pp607-614. https://doi.org/10.1002/clen.201000604
  13. Park, J., et al., 2014 : Bioleaching of Highly Concentrated Arsenic Mine Tailings by Acidithiobacillus ferrooxidans., Separation and Purification Technology., 133, pp291-296. https://doi.org/10.1016/j.seppur.2014.06.054
  14. Stucki, J.W., 1981 : The quantitative assay of minerals for $Fe^{2+}\;and\;Fe^{3+}$ using 1, 10-phenanthroline: II. A photochemical method., Soil Science Society of America Journal, 45(3), pp638-641. https://doi.org/10.2136/sssaj1981.03615995004500030040x
  15. Federation, W. E., A.P.H. Association., 1999 : Standard methods for the examination of water and wastewater 20th edition., pp877-879, American Public Health Association (APHA): Washington, DC, USA
  16. Rohwerder, T., et al., 2003 : Bioleaching review part A., Applied microbiology and biotechnology, 63(3), pp239-248. https://doi.org/10.1007/s00253-003-1448-7
  17. Nagpal, S., Dahlstrom, D., and Oolman, T., 1994 : A mathematical model for the bacterial oxidation of a sulfide ore concentrate., Biotechnology and bioengineering, 43(5), pp357-364. https://doi.org/10.1002/bit.260430503
  18. Lizama, H.M., 2004 : A kinetic description of percolation bioleaching., Minerals Engineering, 17(1), pp23-32. https://doi.org/10.1016/j.mineng.2003.09.012
  19. Ahn, H.J., et al., 2013 : A Study on the Bioleaching of Cobalt and Copper from Cobalt Concentrate by Aspergillus niger strains., Journal of the Korean Institute of Resources Recycling, 22(2), pp44-52. https://doi.org/10.7844/kirr.2013.22.2.44
  20. Kim, M.S., et al., 2013 : Study on the Removal As from the Tailing of Sangdong Mine using Froth Flotation., Journal of the Korean Institute of Resources Recycling, 22(5), pp43-49. https://doi.org/10.7844/kirr.2013.22.5.43
  21. Donati, E. R., and Sand. W., 2007 : Microbial processing of metal sulfides, pp193-218, Springer USA.
  22. Hallberg, K.B., Sehlin, H.M., and Lindstrom, E.B., 1996 : Toxicity of arsenic during high temperature bioleaching of gold-bearing arsenical pyrite., Applied microbiology and biotechnology, 45(1-2), pp212-216. https://doi.org/10.1007/s002530050672
  23. Borja, D., et al., 2015 : Assessment of Arsenic Toxicity in an Acidophilic Bacterial Culture. Proceedings of 2015 Fall Joint Conference of Geology-Mineral and Energy Resources. Jeju, South Korea
  24. Leng, F., et al., 2009 : Comparative study of inorganic arsenic resistance of several strains of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans., Hydrometallurgy, 98(3-4), pp235-240. https://doi.org/10.1016/j.hydromet.2009.05.004
  25. Breed, A.W., et al., 1996 : The effect of As (III) and As (V) on the batch bioleaching of a pyrite-arsenopyrite concentrate., Minerals Engineering, 9(12), pp1235-1252. https://doi.org/10.1016/S0892-6875(96)00119-7
  26. Collinet, M.N. and Morin, D., 1990 : Characterization of arsenopyrite oxidizing Thiobacillus. Tolerance to arsenite, arsenate, ferrous and ferric iron, Antonie van Leeuwenhoek, 57(4), pp237-244. https://doi.org/10.1007/BF00400155
  27. Rawlings, D.E., and Johnson, D.B., 2007 : The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia., Microbiology, 153(2), pp315-324. https://doi.org/10.1099/mic.0.2006/001206-0
  28. Elzeky, M. and Attia, Y.A., 1995 : Effect of bacterial adaptation on kinetics and mechanisms of bioleaching ferrous sulfides., The Chemical Engineering Journal and the Biochemical Engineering Journal, 56(2), ppB115- B124. https://doi.org/10.1016/0923-0467(94)06086-X
  29. Watling, H.R., et al., 2009 : Leaching of a low-grade, copper-nickel sulfide ore. 1. Key parameters impacting on Cu recovery during column bioleaching., Hydrometallurgy, 97(3), pp204-212. https://doi.org/10.1016/j.hydromet.2009.03.006
  30. Kelley, B.C., and Tuovinen, O.H., 1988 : Microbiological oxidations of minerals in mine tailings., Chemistry and biology of solid waste, Springer, pp33-53.

Cited by

  1. A Review of the Application of Ultrasound in Bioleaching and Insights from Sonication in (Bio)Chemical Processes vol.7, pp.1, 2017, https://doi.org/10.3390/resources7010003
  2. Experiences and Future Challenges of Bioleaching Research in South Korea vol.6, pp.4, 2016, https://doi.org/10.3390/min6040128
  3. DLC-5 pp.1029-2446, 2019, https://doi.org/10.1080/10242422.2018.1447566
  4. Chalcopyrite Bioleaching Using Adapted Mesophilic Microorganisms: Effects of Temperature, Pulp Density, and Initial Ferrous Concentrations vol.59, pp.11, 2018, https://doi.org/10.2320/matertrans.M2018247
  5. Field Applicability Field Applicability of Heavy Metal Extraction Technique from Contaminated Soils using Sulfur or Iron Oxidizing Bacteria vol.57, pp.3, 2015, https://doi.org/10.32390/ksmer.2020.57.3.275