DOI QR코드

DOI QR Code

Correction Factors for Outdoor Concentrations of PM2.5 Measured with Portable Real-time Monitors Compared with Gravimetric Methods: Results from South Korea

  • Yun, Dong-Min (Department of Environmental Health Sciences, Soonchunhyang University) ;
  • Kim, Myeong-Bok (APM Engineering) ;
  • Lee, Jun-Bok (Seoul Metropolitan Government Research Institute of Public Health and Environment) ;
  • Kim, Bo-Kyeong (Department of Environmental Health Sciences, Soonchunhyang University) ;
  • Lee, Dong-Jae (Department of Environmental Health Sciences, Soonchunhyang University) ;
  • Lee, Seon-Yeub (Department of Environmental Health Sciences, Soonchunhyang University) ;
  • Yu, Sol (APM Engineering) ;
  • Kim, Sung-Roul (Department of Environmental Health Sciences, Soonchunhyang University)
  • Received : 2015.08.11
  • Accepted : 2015.11.10
  • Published : 2015.12.29

Abstract

This study investigated the association between $PM_{2.5}$ concentrations obtained with portable real-time monitors and those obtained with gravimetric methods in national urban air-quality monitoring sites in Seoul, South Korea. We used the SidePak AM510 Personal Aerosol Monitor (TSI Inc., 500 Cardigan Road Shoreview, MN) and DustTrak DRX 8533 (TSI Inc., 500 Cardigan Road Shoreview, MN) as portable real-time monitors for measuring $PM_{2.5}$ concentrations and compared these values with those measured with the PMS-103 or SEQ 47/50 models operated by Federal Reference Method (FRM) or the European Committee for Standardization(ECS), respectively, in national urban air-quality monitoring sites in Seoul. Measurements were conducted every other day in the winter and spring seasons of 2014. The estimated daily mean concentrations of $PM_{2.5}$ ranged between 13.4 and $161.9{\mu}g/m^3$ using AM 510 and between 22.0 and $156.0{\mu}g/m^3$ using DustTrak. The Spearman correlation coefficient for $PM_{2.5}$ concentrations between AM 510 and gravimetric results was 0.99, and the correlation between DustTrak and gravimetric results was 0.87. The correction factor suggested was 0.42 and 0.29 for AM 510 and DustTrak, respectively. We found that $PM_{2.5}$ concentrations measured with real-time monitors could overestimate true $PM_{2.5}$ concentrations and therefore the application of a correction factor (0.43) is strongly suggested for quantification when Real-time monitors were operated of $PM_{2.5}$ levels at urban atmospheric environment of South Korea.

Keywords

References

  1. Allegrini, I., Baumann, R., Berghmans, P., Blanchard, O., Borowiak, A., Febo, A., Frohlich, M., Fuglsang, K., Garcia Dos Santos-Alves, S., Gehrig, R., Hall, D., Hanssen, J. E., Hauck, H., Hillamo, R., Hollander, W., Hoogland, H., Houdret, J.-L., Koistinen, K., Kuhlbusch, Th., Laskus, L., Laxen, D., Maggos, Th., Marconi, A., Marshall, I., Marsteen, L., Nyquist, G., Quincey, P., Saunders, K., Siegel, D., Vassilakos, Chr., 2006, Field test experiments to validate the CEN standard measurement method for $PM_{2.5}$, Final Report, European Commission, Luxembourg.
  2. Borgini, A., Tittarelli, A., Ricci, C., Bertoldi, M., De Saeger, E., Crosignani, P., 2011, Personal exposure to $PM_{2.5}$ among high-school students in Milan and background measurements: The EuroLifeNet study, Atmos Enviro., 45(25), 4147-4151. https://doi.org/10.1016/j.atmosenv.2011.05.026
  3. Both, A. F., Balakrishnan, A., Joseph, B., Marshall, J. D., 2011, Spatiotemporal aspects of real-time $PM_{2.5}$: low- and middle-income neighborhoods in Bangalore, India, Environ Sci Technol., 45(13), 5629-5636. https://doi.org/10.1021/es104331w
  4. Chung, A., Chang, D. P., Kleeman, M. J., Perry, K. D., Cahill, T. A., Dutcher, D., McDougall, E. M., Stroud, K., 2001, Comparison of real-time instruments used to monitor airborne particulate matter, J Air Waste Manag Assoc., 51(1), 109-120. https://doi.org/10.1080/10473289.2001.10464254
  5. Contini, D., Cesari, D., Donateo, A., Chirizzi, D., Belosi, F., 2014, Characterization of PM10 and $PM_{2.5}$ and their metals content in different typologies of sites in South-Eastern Italy, Atmosphere., 5(2), 435-453. https://doi.org/10.3390/atmos5020435
  6. Enftens, M. R., Tsai, M. Y., Ampe, C., Anwander, B., Beelen, R. M. J., Bellander, T., Cesaroni, G., Cirach, M., Cyrys, J., de Hoogh, K., de Nazelle, A., de Vocht, F., Declercq, C., Dedele, A., Eriksen, K., Galassi, C., Grazuleviciene, R., Grivas, G., Heinrich, J., Hoffmann, B., Iakovides, M., Ineichen, A., Katsouyanni, K., Korek, M., Kramer, U., Kuhlbusch, T., Lanki, T., Madsen, C., Meliefste, K., Molter, A., Mosler, G., Nieuwenhuijsen, M., Oldenwening, M., Pennanen, A., Probst-Hensch, N., Quass, U., Raaschou-Nielsen, O., Ranzi, A., Stephanou, E., Sugiri, D., Udvardy, O., Vaskovi, E., Weinmayr, G., Brunekreef, B., Hoek, G., 2012, Spatial variation of $PM_{2.5}$, $PM_{10}$, $PM_{2.5}$ absorbance and PM coarse concentrations between and within 20 European study areas and the relationship with $NO_2$ - Results of the ESCAPE project, Atmos Enviro., 62, 303-317. https://doi.org/10.1016/j.atmosenv.2012.08.038
  7. World Health Organization, 2005, WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, World Health Organization, Geneva, Switzerland.
  8. Gehring, U., Cyrys, J., Sedlmeir, G., Brunekreef, B., Bell, T., Fischer, P., Reinhardt, D., Wichmann, H. E., 2002, Traffic-related air pollution and respiratory health during the first 2 years of life, Eur Respir J., 19(4), 690-698. See comment in PubMed Commons below https://doi.org/10.1183/09031936.02.01182001
  9. International Agency for Research on Cancer, 2015, World Health Organization Web site, http://www.iarc.fr/en/media-centre/iarcnews/pdf/pr221_E.pdf.
  10. Jiang, R. T., Acevedo-Bolton, V., Cheng, K. C., Klepeis, N. E., Ott, W. R., Hildemann, L. M., 2011, Determination of response of real-time SidePak AM510 monitor to secondhand smoke, other common indoor aerosols, and outdoor aerosol, J Environ Monit., 13, 1695-1702. https://doi.org/10.1039/c0em00732c
  11. Karagulian, F., Belis, C. A., Lagler, F., Barbiere, M., Gerboles, M., 2012, Evaluation of a portable nephelometer against the Tapered Element Oscillating Microbalance method for monitoring $PM_{2.5}$. J Environ Monit., 14(8), 2145-2153. https://doi.org/10.1039/c2em30099k
  12. Kim, J. H., Oh, J., Choi, J. S., Ahn, J. Y., Yoon, G. H., Park, J. S., 2014, A Study on the Correction Factor of Optic Scattering $PM_{2.5}$ by Gravimetric Method, Korean Society Urban Environment, 14(1), 41-47.
  13. Korea Ministry of Government Legislation, 2015, Korea Ministry of Government Legislation Web site, http://www.law.go.kr/LSW/lsInfoP.do?lsiSeq=111442&ancYd=20110329&ancNo=22768&efYd=20110329&nwJoYnInfo=N&efGubun=Y&chrClsCd=010202#0000.
  14. Morabia, A., Amstislavski, P. N., Mirer, F. E., Amsti-slavski, T. M., Disl, H., Wolff, M. S., Markowitz, S. B., 2009, Air pollution and activity during transportation by Car, Subway, and Walking, Am J Prev Med., 37(1), 72-77. https://doi.org/10.1016/j.amepre.2009.03.014
  15. Morgenstern, V., Zutavern, A., Cyrys, J., Brockow, I., Koletzko, S., Kramer, U., 2008, Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children, Am J Respir Crit Care Med., 177(12), 1331-1337. https://doi.org/10.1164/rccm.200701-036OC
  16. National Institute of Environmental Research, 2011, Ministry of Environment, http://library.me.go.kr/search/DetailView.ax?sid=1&cid=5510270.
  17. National Institute of Environmental Research, 2014, Ministry of Environment, http://library.me.go.kr/search/DetailView.ax?sid=1&cid=5577545.
  18. Padro-Martineza, L. T., Patton, A. P., Trull, J. B., Zamore, W., Brugge, D., Durant, J. L., 2012, Mobile monitoring of particle number concentration and other traffic-related air pollutants in a near-highway neighborhood over the course of a year, Atmos Environ., 61, 253-264. https://doi.org/10.1016/j.atmosenv.2012.06.088
  19. Puustinen, A., de Hameri, K., Pekkanen, J., Kulmala, M., Hartog, J., Meliefste, K., ten Brink, H., Kos, G., Katsouyanni, K., Karakatsani, A., Kotronarou, A., Kavouras, I., Meddings, C., Thomas, S., Harrison, R., Ayres, J. G., van der Zee, S., Hoek, G., 2007, Spatial variation of particle number and mass over four European cities, Atmos Enviro., 41(31), 6622-6636. https://doi.org/10.1016/j.atmosenv.2007.04.020
  20. Ramachandran, G., Adgate, J. L., Hill, N., Sexton, K., Pratt, G. C., Bock, D., 2000, Comparison of short-term variations (15-Minute Averages) in outdoor and indoor $PM_{2.5}$ concentrations, J Air Waste Manag Assoc., 50(7), 1157-1166. https://doi.org/10.1080/10473289.2000.10464160
  21. Steinle, S., Reis, S., Sabel, C. E., Semple, S., Twigg, M. M., Braban, C. F., Leeson, S. R., Heal, M. R., Harrison, D., Lin, C., Wu, H., 2015, Personal exposure monitoring of $PM_{2.5}$ in indoor and outdoor microenvironments, Sci Total Environ., 508, 383-394. https://doi.org/10.1016/j.scitotenv.2014.12.003
  22. Tabachnick, B. G., Fidell, L. S., Using multivariate statistics, 4th ed, A pearson Education Company 160 Gould Street Needham Heights, MA 02494; 2001.
  23. U.S. Environmental Protection Agency, 2014, U.S. EPA site, http://www.epa.gov/air/criteria.html.
  24. Vallejo, M., Lerma, C., Infante, O., Hermosillo, A. G., Riojas-Rodriguez, H., Cardenas, M., 2004, Personal exposure to particulate matter less than 2.5 lm in Mexico City: a pilot study, J Expo Anal Environ Epidemiol., 14, 323-329. https://doi.org/10.1038/sj.jea.7500328
  25. Van Vliet, E. D. S., Asante, K., Jack, D. W., Kinney, P. L., Whyatt, R. M., Chillrud, S. N., Abokyi, L., Zandoh, C., Owusu-Agyei, S., 2013, Personal exposures to fine particulate matter and black carbon in house-holds cooking with biomass fuels in rural Ghana, Environ Res., 127, 40-48. https://doi.org/10.1016/j.envres.2013.08.009
  26. Wallace, L. A., Wheeler, A. J., Kearney, J., Ryswyk, K. V., You, H., Kulka, R. H., Rasmussen, P. E., Brook, J. R., XU, X., 2011, Validation of continuous particle monitors for personal, indoor, and outdoor exposures, J Expo Sci Environ Epidemiol., 21, 49-64. https://doi.org/10.1038/jes.2010.15
  27. Wheeler, A. J., Wallace, L. A., Kearney, J., Ryswyk, K. V., You, H., Kulka, R., Brook, J. R., Xu, X., 2011, Personal, indoor, and outdoor concentrations of fine and ultrafine particles using continuous monitors in multiple residences, Aerosol Sci Technol., 45(9), 1078-1089. https://doi.org/10.1080/02786826.2011.580798
  28. Zanobetti, A., Franklin, M., Koutrakis, P., Schwartz, J., 2009, Fine particulate air pollution and its components in association with cause-specific emergency admiss-ions, Environ Health., 8, 58. https://doi.org/10.1186/1476-069X-8-58
  29. Zhang, J. J., McCreanor, J. E., Cullinan, P., Chung, K. F., Ohman-Strickland, P., Han, I. K., Jarup, L., Nieuwenhuijsen, M. J., 2009, Health effects of real world exposure to Diesel Exhaust in Persons with Asthma, Research Report 138, HEI., Massachusetts, USA.
  30. Zhu, C. S., Cao, J. J., Shen, Z. X., Liu, S. X., Zhang, T., Zhao, Z. Z., Xu, H. M., Zhang, E. K., 2012, Indoor and outdoor chemical components of $PM_{2.5}$ in the rural areas of Northwestern China, Aerosol Air Qual Res., 12, 1157-1165.

Cited by

  1. Spatiotemporal Association of Real-Time Concentrations of Black Carbon (BC) with Fine Particulate Matters (PM2.5) in Urban Hotspots of South Korea vol.14, pp.11, 2017, https://doi.org/10.3390/ijerph14111350